VLSI — Compatible Implementations for Artificial Neural Networks: The Springer International Series in Engineering and Computer Science, cartea 382
Autor Sied Mehdi Fakhraie, Kenneth C. Smithen Limba Engleză Hardback – 31 dec 1996
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 612.55 lei 6-8 săpt. | |
| Springer Us – 11 oct 2012 | 612.55 lei 6-8 săpt. | |
| Hardback (1) | 618.50 lei 6-8 săpt. | |
| Springer Us – 31 dec 1996 | 618.50 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- 20%
Preț: 594.49 lei - 24%
Preț: 859.55 lei - 20%
Preț: 1847.13 lei - 20%
Preț: 1228.27 lei - 24%
Preț: 866.26 lei - 18%
Preț: 609.91 lei - 20%
Preț: 618.64 lei - 20%
Preț: 569.56 lei - 18%
Preț: 733.28 lei - 18%
Preț: 1177.92 lei - 18%
Preț: 927.56 lei - 20%
Preț: 621.14 lei - 18%
Preț: 911.94 lei - 20%
Preț: 621.64 lei - 15%
Preț: 612.85 lei - 20%
Preț: 618.96 lei - 18%
Preț: 912.40 lei - 20%
Preț: 619.58 lei - 20%
Preț: 950.07 lei - 20%
Preț: 621.01 lei - 18%
Preț: 910.11 lei - 20%
Preț: 956.89 lei - 18%
Preț: 919.85 lei - 20%
Preț: 620.07 lei - 15%
Preț: 617.89 lei - 18%
Preț: 913.32 lei - 18%
Preț: 1173.85 lei - 18%
Preț: 920.45 lei - 15%
Preț: 619.12 lei - 18%
Preț: 911.64 lei - 18%
Preț: 910.58 lei - 20%
Preț: 1234.64 lei
Preț: 618.50 lei
Preț vechi: 727.65 lei
-15% Nou
Puncte Express: 928
Preț estimativ în valută:
109.43€ • 128.65$ • 95.84£
109.43€ • 128.65$ • 95.84£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792398257
ISBN-10: 0792398254
Pagini: 194
Ilustrații: XXIX, 194 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.5 kg
Ediția:1997
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 0792398254
Pagini: 194
Ilustrații: XXIX, 194 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.5 kg
Ediția:1997
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Introduction and Motivation.- 1.1 Introduction.- 1.2 Motivation.- 1.3 Objectives of this Work.- 1.4 Organization of the Book.- 2 Review of Hardware-Implementation Techniques.- 2.1 Introduction.- 2.2 Taxonomies of Neural Hardware.- 2.3 Pulse-Coded Implementations.- 2.4 Digital Implementations.- 2.5 Analog Implementations.- 2.6 Comparison of Some Existing Systems.- 2.7 Summary.- 3 Generalized Artificial Neural Networks (GANNs).- 3.1 Introduction.- 3.2 Generalized Artificial Neural Networks (GANNs).- 3.3 Nonlinear MOS-Compatible Semi-Quadratic Synapses.- 3.4 Networks Composed of Semi-Quadratic Synapses.- 3.5 Training Equations.- 3.6 Simulation and Verification of the Approach.- 3.7 Summary.- 4 Foundations: Architecture Design.- 4.1 Introduction.- 4.2 Feedforward Networks with Linear Synapses.- 4.3 Feedforward Networks with Quadratic Synapses.- 4.4 Single-Transistor-Synapse Feedforward Networks.- 4.5 Intelligent MOS Transistors: SyMOS.- 4.6 Performance of Simple SyMOS Networks.- 4.7 Architecture Design in Neural-Network Hardware.- 4.8 The Resource-Finding Exploration.- 4.9 The Current-Source-Inhibited Architecture (CSIA).- 4.10 The Switchable-Sign-Synapse Architecture (SSSA).- 4.11 Digital-Analog Switchable-Sign-Synapse Architecture (DASA).- 4.12 Simulation Results and Comparison.- 4.13 Our Choice of the Way to Go.- 4.14 Summary.- 5 Design, Modeling, and Implementation of a Synapse-MOS Device.- 5.1 Introduction.- 5.2 Design of a SyMOS Device in a CMOS Technology.- 5.3 Implementation.- 5.4 Reliability Issues.- 5.5 Summary.- 6 Synapse-MOS Artificial Neural Networks (SANNs).- 6.1 Introduction.- 6.2 Overview of the Work Leading to Hardware Implementation.- 6.3 Guidelines for Neural-Network Hardware Design.- 6.4 Design and VLSI Implementation.- 6.5 Structure of an SSSA Chip.-6.6 Training Algorithm.- 6.7 Experimental Results.- 6.8 Summary.- 7 Analog Quadratic Neural Networks (AQNNs).- 7.1 Introduction.- 7.2 Background.- 7.3 Design of an “Analog Quadratic Neural Network (AQNN)”.- 7.4 Training.- 7.5 VLSI Implementation.- 7.6 Test Results.- 7.7 Applications.- 7.8 Summary and Future Work.- 8 Conclusion and Recommendations for Future Work.- 8.1 Summary of the Work.- 8.2 Contributions of this work.- 8.3 Recommendations for Future Work.- Appendix A Review of Nonvolatile Semiconductor Memory Devices.- A.1 Background.- A.2 Device Review.- A.2.1 Charge-Trapping Devices.- A.2.2 Floating-Gate Devices.- A.3 Conclusion.- Appendix B Scaling Effects.- B.1 The Effect of the Scaling of CMOS Technology on SANNs.- Appendix C Performance Evaluation.- C.1 Speed.- C.2 Power Consumption.- C.2.1 Detailed Calculation of Power Dissipation.- C.3 Area.- C.4 Overall Performance.- References.