Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms: Mathematics and its Applications, cartea 72
Autor N.Ja. Vilenkin, A.U. Klimyken Limba Engleză Paperback – 25 sep 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (4) | 626.36 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 7 dec 2010 | 626.36 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 5 dec 2010 | 917.54 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 25 sep 2012 | 970.61 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 5 dec 2010 | 1342.63 lei 6-8 săpt. | |
| Hardback (3) | 632.50 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 noi 1994 | 632.50 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 31 dec 1992 | 976.50 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 sep 1992 | 1348.98 lei 6-8 săpt. |
Din seria Mathematics and its Applications
-
Preț: 398.01 lei - 20%
Preț: 613.70 lei -
Preț: 419.52 lei -
Preț: 435.00 lei - 15%
Preț: 678.08 lei - 15%
Preț: 411.63 lei - 15%
Preț: 680.49 lei - 15%
Preț: 508.87 lei - 18%
Preț: 702.82 lei -
Preț: 438.14 lei - 15%
Preț: 434.03 lei - 15%
Preț: 615.32 lei -
Preț: 461.04 lei - 20%
Preț: 737.41 lei - 15%
Preț: 420.02 lei - 15%
Preț: 618.78 lei -
Preț: 430.56 lei - 15%
Preț: 615.63 lei -
Preț: 471.35 lei - 18%
Preț: 1186.02 lei - 15%
Preț: 678.08 lei -
Preț: 437.94 lei - 18%
Preț: 705.56 lei -
Preț: 462.26 lei - 18%
Preț: 705.75 lei - 20%
Preț: 373.35 lei - 20%
Preț: 486.11 lei - 18%
Preț: 1014.51 lei - 15%
Preț: 618.03 lei - 15%
Preț: 671.45 lei -
Preț: 378.05 lei - 15%
Preț: 626.52 lei - 15%
Preț: 622.59 lei -
Preț: 374.71 lei
Preț: 970.61 lei
Preț vechi: 1183.67 lei
-18% Nou
Puncte Express: 1456
Preț estimativ în valută:
171.76€ • 201.40$ • 150.84£
171.76€ • 201.40$ • 150.84£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401055666
ISBN-10: 9401055661
Pagini: 640
Ilustrații: XXIII, 612 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.89 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401055661
Pagini: 640
Ilustrații: XXIII, 612 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.89 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
0: Introduction.- 1: Elements of the Theory of Lie Groups and Lie Algebras.- 1.0. Preliminary Information from Algebra, Topology, and Functional Analysis.- 1.1. Lie Groups and Lie Algebras.- 1.2. Homogeneous Spaces with Semisimple Groups of Motions.- 2: Group Representations and Harmonic Analysis on Groups.- 2.1. Representations of Lie Groups and Lie Algebras.- 2.2. Basic Concepts of the Theory of Representations.- 2.3. Harmonic Analysis on Groups and on Homogeneous Spaces.- 3: Commutative Groups and Elementary Functions. The Group of Linear Transformations of the Straight Line and the Gamma-Function. Hypergeometric Functions.- 3.1. Representations of One-Dimensional Commutative Lie Groups and Elementary Functions.- 3.2. The Groups SO(2) and R, Fourier Series and Integrals.- 3.3. Fourier Transform in the Complex Domain. Mellin and Laplace Transforms.- 3.4. Representations of the Group of Linear Transforms of the Straight Line and the Gamma-Function.- 3.5. Hypergeometric Functions and Their Properties.- 4: Representations of the Groups of Motions of Euclidean and Pseudo-Euclidean Planes, and Cylindrical Functions.- 4.1. Representations of the Group ISO(2) and Bessel Functions with Integral Index.- 4.2. Representations of the Group ISO(1,1), Macdonald and Hankel Functions.- 4.3. Functional Relations for Cylindrical Functions.- 4.4. Quasi-Regular Representations of the Groups ISO(2), ISO(1,1) and Integral Transforms.- 5: Representations of Groups of Third Order Triangular Matrices, the Confluent Hypergeometric Function, and Related Polynomials and Functions.- 5.1. Representations of the Group of Third Order Real Triangular Matrices.- 5.2. Functional Relations for Whittaker Functions.- 5.3. Functional Relations for the Confluent Hypergeometric Function and for Parabolic Cylinder Functions.- 5.4. Integrals Involving Whittaker Functions and Parabolic Cylinder Functions.- 5.5. Representations of the Group of Complex Third Order Triangular Matrices, Laguerre and Charlier Polynomials.- 6: Representations of the Groups SU(2), SU(1,1) and Related Special Functions: Legendre, Jacobi, Chebyshev Polynomials and Functions, Gegenbauer, Krawtchouk, Meixner Polynomials.- 6.1. The Groups SU(2) and SU(1,1).- 6.2. Finite Dimensional Irreducible Representations of the Groups GL(2,C) and SU(2).- 6.3. Matrix Elements of the Representations T? of the Group SL(2, C) and Jacobi, Gegenbauer and Legendre Polynomials.- 6.4. Representations of the Group SU(1,1).- 6.5. Matrix Elements of Representations of SU(1, 1), Jacobi and Legendre Functions.- 6.6. Addition Theorems and Multiplication Formulas.- 6.7. Generating Functions and Recurrence Formulas.- 6.8. Matrix Elements of Representations of SU(2) and SU(1,1) as Functions of Column Index. Krawtchouk and Meixner Polynomials.- 6.9. Characters of Representations of SU(2) and Chebyshev Polynomials.- 6.10. Expansion of Functions on the Group SU(2).- 7: Representations of the Groups SU(1,1) and SL(2,?) in Mixed Bases. The Hypergeometric Function.- 7.1. The Realization of Representations T? in the Space of Functions on the Straight Line.- 7.2. Calculation of the Kernels of Representations R?.- 7.3. Functional Relations for the Hypergeometric Function.- 7.4. Special Functions Connected with the Hypergeometric Function.- 7.5. The Mellin Transform and Addition Formulas for the Hypergeometric Function.- 7.6. The Kernels K33(?,?; ?; g) and Hankel Functions.- 7.7. The Kernels Kij(?, ?; ? g), i ? j, and Special Functions.- 7.8. Harmonic Analysis on the Group SL(2, R) and Integral Transforms.- 8: Clebsch-GordanCoefficients, Racah Coefficients, and Special Functions.- 8.1. Clebsch-Gordan Coefficients of the Group SU(2).- 8.2. Properties of CGC’s of the Group SU(2).- 8.3. CGC’s, the Hypergeometric Function 3F2(…; 1) and Jacobi Polynomials.- 8.4. Racah Coefficients of SU(2) and the Hypergeometric Function 4F3(…; 1).- 8.5. Hahn and Racah Polynomials.- 8.6. Clebsch-Gordan and Racah Coefficients of the Group S and Orthogonal Polynomials.- 8.7. Clebsch-Gordan Coefficients of the Group SL(2, R).