Natural Language Processing and Chinese Computing: 10th CCF International Conference, NLPCC 2021, Qingdao, China, October 13–17, 2021, Proceedings, Part II: Lecture Notes in Computer Science, cartea 13029
Editat de Lu Wang, Yansong Feng, Yu Hong, Ruifang Heen Limba Engleză Paperback – 10 oct 2021
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 583.44 lei 6-8 săpt. | |
| Springer International Publishing – 10 oct 2021 | 583.44 lei 6-8 săpt. | |
| Springer International Publishing – 12 oct 2021 | 702.81 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 583.44 lei
Preț vechi: 729.30 lei
-20% Nou
Puncte Express: 875
Preț estimativ în valută:
103.24€ • 121.06$ • 90.67£
103.24€ • 121.06$ • 90.67£
Carte tipărită la comandă
Livrare economică 06-20 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030884826
ISBN-10: 3030884821
Pagini: 630
Ilustrații: XXXVI, 630 p. 330 illus., 146 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.92 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030884821
Pagini: 630
Ilustrații: XXXVI, 630 p. 330 illus., 146 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.92 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Posters - Fundamentals of NLP.- Syntax and Coherence - The Effect on Automatic Argument Quality Assessment.- ExperienceGen 1.0: A Text Generation Challenge Which Requires Deduction and Induction Ability.- Machine Translation and Multilinguality.- SynXLM-R: Syntax-enhanced XLM-R in Translation Quality Estimation.- Machine Learning for NLP.- Memetic Federated Learning for Biomedical Natural Language Processing.- Information Extraction and Knowledge Graph.- Event Argument Extraction via a Distance-Sensitive Graph Convolutional Network.- Exploit Vague Relation: An Augmented Temporal Relation Corpus and Evaluation.- Searching Effective Transformer for Seq2Seq Keyphrase Generation.- Prerequisite Learning with Pre-trained Language and Graph Embedding Models.- Summarization and Generation.- Variational Autoencoder with Interactive Attention for Affective Text Generation.- CUSTOM: Aspect-Oriented Product Summarization for E-Commerce.- Question Answering.-FABERT: A Feature Aggregation BERT-Based Model for Document Reranking.- Generating Relevant, Correct and Fluent Answers in Natural Answer Generation.- GeoCQA: A Large-scale Geography-Domain Chinese Question Answering Dataset from Examination.- Dialogue Systems.- Generating Informative Dialogue Responses with Keywords-Guided Networks.- Zero-Shot Deployment for Cross-Lingual Dialogue System.- MultiWOZ 2.3: A multi-domain task-oriented dialogue dataset enhanced with annotation corrections and co-reference annotation.- EmoDialoGPT: Enhancing DialoGPT with Emotion.- Social Media and Sentiment Analysis.- BERT-based Meta-learning Approach with Looking Back for Sentiment Analysis of Literary Book Reviews.- ISWR: an Implicit Sentiment Words Recognition Model Based on Sentiment Propagation.- An Aspect-Centralized Graph Convolutional Network for Aspect-based Sentiment Classification.- NLP Applications and Text Mining.- Capturing Global Informativeness in Open Domain Keyphrase Extraction.- Background Semantic Information Improves VerbalMetaphor Identification.- Multimodality and Explainability.- Towards unifying the explainability evaluation methods for NLP.- Explainable AI Workshop.- Detecting Covariate Drift with Explanations.- A Data-Centric Approach Towards Deducing Bias in Artificial Intelligence Systems for Textual Contexts.- Student Workshop.- Enhancing Model Robustness via Lexical Distilling.- Multi-stage Multi-modal Pre-training for Video Representation.- Nested Causality Extraction on Traffic Accident Texts as Question Answering.- Evaluation Workshop.- MSDF: A General Open-Domain Multi-Skill Dialog Framework.- RoKGDS: A Robust Knowledge Grounded Dialog System.- Enhanced Few-shot Learning with Multiple-Pattern-Exploiting Training.- BIT-Event at NLPCC-2021 Task 3: Subevent Identification via Adversarial Training.- Few-shot Learning for Chinese NLP tasks.- When Few-shot Learning Meets Large-scale Knowledge-enhanced Pre-training: Alibaba at FewCLUE.- TKB²ert: Two-stage Knowledge Infused Behavioral Fine-tuned BERT.- A Unified Information Extraction System Based on Role Recognition and Combination.- A Simple but Effective System for Multi-format Information Extraction.- A Hierarchical Sequence Labeling Model for Argument Pair Extraction.- Distant finetuning with discourse relations for stance classification.- The Solution of Xiaomi AI Lab to the 2021 Language and Intelligence Challenge: Multi-Format Information Extraction Task.- A Unified Platform for Information Extraction with Two-stage Process.- Overview of the NLPCC 2021 Shared Task: AutoIE2.- Task 1 - Argumentative Text Understanding for AI Debater (AIDebater).- Two Stage Learning for Argument Pairs Extraction.- Overview of Argumentative Text Understanding for AI Debater Challenge.- ACE: A Context-Enhanced model for Interactive Argument Pair Identification.- Context-Aware and Data-Augmented Transformer for Interactive Argument Pair Identification.- ARGUABLY @ AI Debater-NLPCC 2021 Task 3: Argument Pair Extraction from Peer Review and Rebuttals.- Sentence Rewriting for Fine-Tuned Model Based on Dictionary: Taking the Track 1 of NLPCC 2021 Argumentative Text Understanding for AI Debater as an Example.- Knowledge Enhanced transformers System for Claim Stance Classification.