Machine Learning: An Artificial Intelligence Approach: Symbolic Computation
Editat de R.S. Michalski, J.G. Carbonell, T.M. Mitchellen Limba Engleză Paperback – 3 oct 2013
Din seria Symbolic Computation
- 20%
Preț: 336.86 lei - 20%
Preț: 626.71 lei - 20%
Preț: 622.59 lei - 20%
Preț: 624.02 lei - 20%
Preț: 623.39 lei - 20%
Preț: 614.65 lei - 20%
Preț: 627.83 lei - 20%
Preț: 617.38 lei - 20%
Preț: 625.93 lei - 20%
Preț: 634.45 lei - 20%
Preț: 620.38 lei - 20%
Preț: 623.39 lei - 20%
Preț: 625.13 lei - 20%
Preț: 621.49 lei -
Preț: 379.31 lei - 20%
Preț: 314.04 lei - 20%
Preț: 329.25 lei - 20%
Preț: 327.04 lei - 20%
Preț: 616.26 lei - 20%
Preț: 632.58 lei - 20%
Preț: 623.22 lei - 20%
Preț: 635.90 lei - 15%
Preț: 614.24 lei - 20%
Preț: 632.26 lei - 20%
Preț: 627.51 lei - 20%
Preț: 317.85 lei - 20%
Preț: 682.51 lei - 20%
Preț: 630.68 lei - 20%
Preț: 312.30 lei - 20%
Preț: 728.16 lei - 20%
Preț: 342.11 lei - 20%
Preț: 315.80 lei - 20%
Preț: 317.68 lei - 20%
Preț: 329.91 lei - 20%
Preț: 534.13 lei
Preț: 802.33 lei
Preț vechi: 1002.92 lei
-20% Nou
Puncte Express: 1203
Preț estimativ în valută:
141.100€ • 166.53$ • 124.50£
141.100€ • 166.53$ • 124.50£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783662124079
ISBN-10: 3662124076
Pagini: 588
Ilustrații: XI, 572 p. 25 illus.
Dimensiuni: 170 x 244 x 31 mm
Greutate: 0.93 kg
Ediția:1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Symbolic Computation, Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3662124076
Pagini: 588
Ilustrații: XI, 572 p. 25 illus.
Dimensiuni: 170 x 244 x 31 mm
Greutate: 0.93 kg
Ediția:1983
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Symbolic Computation, Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
One General Issues in Machine Learning.- 1 An Overview of Machine Learning.- 2 Why Should Machines Learn?.- Two Learning from Examples.- 3 A Comparative Review of Selected Methods for Learning from Examples.- 4 A Theory and Methodology of Inductive Learning.- Three Learning in Problem-Solving and Planning.- 5 Learning by Analogy: Formulating and Generalizing Plans from Past Experience.- 6 Learning by Experimentation: Acquiring and Refining Problem-Solving Heuristics.- 7 Acquisition of Proof Skills in Geometry.- 8 Using Proofs and Refutations to Learn from Experience.- Four Learning from Observation and Discovery.- 9 The Role of Heuristics in Learning by Discovery: Three Case Studies.- 10 Rediscovering Chemistry With the BACON System.- 11 Learning From Observation: Conceptual Clustering.- Five Learning from Instruction.- 12 Machine Transformation of Advice into a Heuristic Search Procedure.- 13 Learning by Being Told: Acquiring Knowledge for Information Management.- 14 The Instructible Production System: A Retrospective Analysis.- Six Applied Learning Systems.- 15 Learning Efficient Classification Procedures and their Application to Chess End Games.- 16 Inferring Student Models for Intelligent Computer-Aided Instruction.- Comprehensive Bibliography of Machine Learning.- Glossary of Selected Terms In Machine Learning.- About the Authors.- Author Index.