Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part II: Lecture Notes in Computer Science, cartea 11052
Editat de Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, Georgiana Ifrimen Limba Engleză Paperback – 23 ian 2019
The contributions were organized in topical sections named as follows:
Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation.
Part II: graphs; kernel methods; learning paradigms; matrix and tensor analysis; online and active learning; pattern and sequence mining; probabilistic models and statistical methods; recommender systems; and transfer learning.
Part III: ADS data science applications; ADS e-commerce; ADS engineering and design; ADS financial and security; ADS health; ADS sensing and positioning; nectar track; and demo track.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 342.57 lei 6-8 săpt. | |
| Springer International Publishing – 18 ian 2019 | 342.57 lei 6-8 săpt. | |
| Springer International Publishing – 23 ian 2019 | 649.06 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 649.06 lei
Preț vechi: 811.33 lei
-20% Nou
Puncte Express: 974
Preț estimativ în valută:
114.86€ • 134.68$ • 100.87£
114.86€ • 134.68$ • 100.87£
Carte tipărită la comandă
Livrare economică 06-20 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030109271
ISBN-10: 3030109275
Pagini: 810
Ilustrații: XXX, 866 p. 463 illus., 192 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.23 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030109275
Pagini: 810
Ilustrații: XXX, 866 p. 463 illus., 192 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.23 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Graphs.- Temporally Evolving Community Detection and Prediction in Content-Centric Networks.- Local Topological Data Analysis to Uncover the Global Structure of Data Approaching Graph-Structured Topologies.- Similarity Modeling on Heterogeneous Networks via Automatic Path Discovery.- Dynamic hierarchies in temporal directed networks.- Risk-Averse Matchings over Uncertain Graph Databases.- Discovering Urban Travel Demands through Dynamic Zone Correlation in Location-Based Social Networks.- Social-Affiliation Networks: Patterns and the SOAR Model.- ONE-M: Modeling the Co-evolution of Opinions and Network Connections.- Think before You Discard: Accurate Triangle Counting in Graph Streams with Deletions.- Semi-Supervised Blockmodelling with Pairwise Guidance.- Kernel Methods.- Large-scale Nonlinear Variable Selection via Kernel Random Features.- Fast and Provably Effective Multi-view Classification with Landmark-based SVM.- Nyström-SGD: Fast Learning of Kernel-Classifiers with Conditioned Stochastic Gradient Descent.- Learning Paradigms.- Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds.- Deep Learning Architecture Search by Neuro-Cell-based Evolution with Function-Preserving Mutations.- VC-Dimension Based Generalization Bounds for Relational Learning.- Robust Super-Level Set Estimation using Gaussian Processes.- Robust Super-Level Set Estimation using Gaussian Processes.- Scalable Nonlinear AUC Maximization Methods.- Matrix and Tensor Analysis.- Lambert Matrix Factorization.- Identifying and Alleviating Concept Drift in Streaming Tensor Decomposition.- MASAGA: A Linearly-Convergent Stochastic First-Order Method for Optimization on Manifolds.- Block CUR: Decomposing Matrices using Groups of Columns.- Online and Active Learning.- SpectralLeader: Online Spectral Learning for Single Topic Models.- Online Learning of Weighted Relational Rules for Complex Event Recognition.- Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees.- Online Feature Selection by Adaptive Sub-gradient Methods.- Frame-based Optimal Design.- Hierarchical Active Learning with Proportion Feedback on Regions.- Pattern and Sequence Mining.- An Efficient Algorithm for Computing Entropic Measures of Feature Subsets.- Anytime Subgroup Discovery in Numerical Domains with Guarantees.- Discovering Spatio-Temporal Latent Influence in Geographical Attention Dynamics.- Mining Periodic Patterns with a MDL Criterion.- Revisiting Conditional Functional Dependency Discovery: Splitting the “C" from the “FD".- Sqn2Vec: Learning Sequence Representation via Sequential Patterns with a Gap Constraint.- Mining Tree Patterns with Partially Injective Homomorphisms.- Probabilistic Models and Statistical Methods.- Variational Bayes for Mixture Models with Censored Data.- Exploration Enhanced Expected Improvement for Bayesian Optimization.- A Left-to-right Algorithm for Likelihood Estimation in Gamma-Poisson Factor Analysis.- Causal Inference on Multivariate and Mixed-Type Data.- Recommender Systems.- POLAR: Attention-based CNN for One-shot Personalized Article Recommendation.- Learning Multi-granularity Dynamic Network Representations for Social Recommendation.- GeoDCF: Deep Collaborative Filtering with Multifaceted Contextual Information in Location-based Social Networks.- Personalized Thread Recommendation for MOOC Discussion Forums.- Inferring Continuous Latent Preference on Transition Intervals for Next Point-of-Interest Recommendation.- Transfer Learning.- Feature Selection for Unsupervised Domain Adaptation using Optimal Transport.- Towards more Reliable Transfer Learning.- Differentially Private Hypothesis Transfer Learning.- Information-theoretic Transfer Learning framework for Bayesian Optimisation.- A Unified Framework for Domain Adaptation using Metric Learning on Manifolds.