Learning and Intelligent Optimization: 7th International Conference, LION 7, Catania, Italy, January 7-11, 2013, Revised Selected Papers: Lecture Notes in Computer Science, cartea 7997
Editat de Giuseppe Nicosia, Panos Pardalosen Limba Engleză Paperback – 9 dec 2013
Din seria Lecture Notes in Computer Science
- 20%
Preț: 400.77 lei - 20%
Preț: 754.11 lei - 20%
Preț: 324.19 lei - 20%
Preț: 373.80 lei - 20%
Preț: 342.61 lei - 20%
Preț: 403.00 lei - 20%
Preț: 573.45 lei -
Preț: 395.25 lei - 20%
Preț: 487.46 lei - 20%
Preț: 355.27 lei - 20%
Preț: 731.97 lei - 20%
Preț: 293.24 lei - 20%
Preț: 669.21 lei - 20%
Preț: 984.64 lei - 20%
Preț: 620.33 lei - 20%
Preț: 336.86 lei - 20%
Preț: 330.54 lei - 20%
Preț: 313.87 lei - 20%
Preț: 679.09 lei - 20%
Preț: 373.16 lei - 20%
Preț: 782.57 lei - 20%
Preț: 434.17 lei - 20%
Preț: 489.11 lei - 20%
Preț: 904.16 lei - 20%
Preț: 375.72 lei - 20%
Preț: 400.17 lei - 20%
Preț: 432.78 lei - 20%
Preț: 631.96 lei - 20%
Preț: 432.11 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 556.96 lei - 20%
Preț: 488.90 lei - 20%
Preț: 560.93 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 328.94 lei - 20%
Preț: 629.71 lei - 20%
Preț: 568.70 lei - 20%
Preț: 447.31 lei - 20%
Preț: 733.68 lei - 20%
Preț: 315.26 lei - 20%
Preț: 315.62 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 850.42 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 519.32 lei
Preț: 328.79 lei
Preț vechi: 410.99 lei
-20%
Puncte Express: 493
Preț estimativ în valută:
58.12€ • 68.04$ • 50.76£
58.12€ • 68.04$ • 50.76£
Carte tipărită la comandă
Livrare economică 06-20 martie
Specificații
ISBN-13: 9783642449727
ISBN-10: 3642449727
Pagini: 488
Ilustrații: XV, 470 p. 120 illus.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642449727
Pagini: 488
Ilustrații: XV, 470 p. 120 illus.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Interleaving Innovization with Evolutionary Multi-Objective Optimization in Production System Simulation for Faster Convergence.- Intelligent optimization for the minimum labelling spanning tree problem.- A Constraint Satisfaction Approach to Tractable Theory Induction.- Features for Exploiting Black-Box Optimization Problem Structure.- MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets.- Sharing Information in Parallel Search with Search Space Partitioning.- Fast Computation of the Multi-points Expected Improvement with Applications in Batch Selection.- R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection.- A Heuristic Algorithm for the Set Multicover Problem with Generalized Upper Bound Constraints.- A genetic algorithm approach for the multidimensional two-way number partitioning problem.- Adaptive Dynamic Load Balancing in Heterogeneous Multiple GPUs-CPUs Distributed Setting: Case Study of B&B Tree Search.- Multi-objective optimization for relevant sub-graph extraction.- PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection.- Neutrality in the Graph Coloring Problem.- Kernel multi label vector optimization (kMLVO) - A unified multi-label classification formalism.- Robust Benchmark Set Selection for Boolean Constraint Solvers.- Boosting Sequential Solver Portfolios: Knowledge Sharing and Accuracy Prediction.- A Fast and Adaptive Local Search Algorithm for Multi-Objective Optimization.- An Analysis of Hall-of-Fame Strategies in Competitive Coevolutionary Algorithms for Self-Learning in RTS Games.- Resources Optimization in (Video) Games: a Novel Approach to Teach Applied Mathematics.- CMF: a combinatorial tool to find composite motifs.- Hill-climbing Behaviour on Quantized NK-landscapes.- Neighbourhood Specification for Game Strategy Evolution in a Spatial Iterated Prisoners Dilemma Game.- A Study on the Specification of a Scalarizing Function in MOEA/D for Many-Objective Knapsack Problems.- Portfolio with Block Branching for Parallel SAT Solvers.- Parameter Setting with Dynamic Island Models.- A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints.- Solution of the maximum k-balanced subgraph problem.- Racing with a Fixed Budget and a Self-Adaptive Significance Level.- An efficient best response heuristic for a non-preemptive strictly periodic scheduling problem.- Finding an evolutionary solution to the game of Mastermind with good scaling behaviour.- A Fast Local Search Approach For Multiobjective problems.- Generating Customized Landscapes in Permutation-based Combinatorial Optimization Problems.- Multiobjective Evolution of Mixed Nash Equilibria.- Hybridizing Constraint Programming and Monte-Carlo Tree Search: Application to the Job Shop problem.- From Grammars to Parameters: Automatic Iterated Greedy Design for the Permutation Flow-shop Problem with Weighted Tardiness.- Architecture for Monitoring Learning Processes using Video Games.- Quality Measures of Parameter Tuning for Aggregated Multi-Objective Temporal Planning.- Evolutionary FSM-Based Agents for Playing Super Mario Game.- Identifying Key Algorithm Parameters and Instance Features using Forward Selection.- Using Racing to Automatically Configure Algorithms for Scaling Performance.- Algorithm Selection for the Graph Coloring Problem.- Batched Mode Hyper-heuristics.- Tuning algorithms for tackling large instances: An experimental protocol.- Automated Parameter Tuning Framework for Heterogeneous and Large Instances: Case Study in Quadratic Assignment Problem.- Practically Desirable Solutions Search on Multi-Objective Optimization.- Oversized Populations and Cooperative Selection: Dealing with Massive Resources in Parallel Infrastructures.- Effects of Population Size on Selection and Scalability in Evolutionary Many-objective Optimization.- A novel feature selection method for classification using a fuzzy criterion.
Caracteristici
Proceedings of the 7th International Conference on Learning and Optimization, LION 7 Includes supplementary material: sn.pub/extras