Learning and Intelligent Optimization: Designing, Implementing and Analyzing Effective Heuristics: Third International Conference, LION 2009 III, Trento, Italy, January 14-18, 2009. Selected Papers: Lecture Notes in Computer Science, cartea 5851
Editat de Thomas Stützleen Limba Engleză Paperback – 9 dec 2009
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 320.24 lei
Preț vechi: 400.30 lei
-20% Nou
Puncte Express: 480
Preț estimativ în valută:
56.67€ • 66.54$ • 49.74£
56.67€ • 66.54$ • 49.74£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642111686
ISBN-10: 3642111688
Pagini: 288
Ilustrații: XII, 273 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.43 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642111688
Pagini: 288
Ilustrații: XII, 273 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.43 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Evolutionary Dynamics of Extremal Optimization.- Evolutionary Dynamics of Extremal Optimization.- A Variable Neighborhood Descent Search Algorithm for Delay-Constrained Least-Cost Multicast Routing.- Expeditive Extensions of Evolutionary Bayesian Probabilistic Neural Networks.- New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory.- Beam-ACO Based on Stochastic Sampling: A Case Study on the TSP with Time Windows.- Flexible Stochastic Local Search for Haplotype Inference.- A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance.- Fitness Landscape Analysis for the Resource Constrained Project Scheduling Problem.- An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems.- Selection of Heuristics for the Job-Shop Scheduling Problem Based on the Prediction of Gaps in Machines.- Position-Guided Tabu Search Algorithm for the Graph Coloring Problem.- Corridor Selection and Fine Tuning for the Corridor Method.- Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evolutionary Algorithms.- Comparison of Coarsening Schemes for Multilevel Graph Partitioning.- Cooperative Strategies and Reactive Search: A Hybrid Model Proposal.- Study of the Influence of the Local Search Method in Memetic Algorithms for Large Scale Continuous Optimization Problems.- MALIOB Workshop Papers.- Neural Network Pairwise Interaction Fields for Protein Model Quality Assessment.- A Graph-Based Semi-supervised Algorithm for Protein Function Prediction from Interaction Maps.- Substitution Matrices and Mutual Information Approaches to Modeling Evolution.