Cantitate/Preț
Produs

Fundamentals of Mathematical Statistics: Statistical Inference: Springer Texts in Statistics

Autor Hung T. Nguyen, Gerald S. Rogers
en Limba Engleză Paperback – 21 oct 2011
This is a text (divided into two volumes) for a two semester course in Mathematical Statistics at the Senior/Graduate level. The two main pedagogical aspects in these Volumes are: (i) the material is designed in lessons (each for a 50 minute class) with complementary exercises and home work. (ii) although the material is traditional, great care is exerted upon self-contained, rigorous and complete presentations. An elementary introduction to characteristic functions and probability measures and intergration, but not general measure theory in Volume I, allows a complete proof of some central limit theorems and a rigorous treatment of asymptotic of statistical inference. But students need to be familiar only with such things as Jacobians and eigenvalues of matrices. Volume II: Statistical Inference is designed for the second semester and contains a rigorous introduction to Mathematical Statistics, from random samples to asymptotic theory of statistical inference.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 38134 lei  6-8 săpt.
  Springer – 21 oct 2011 38134 lei  6-8 săpt.
  Springer – 12 oct 2012 38172 lei  6-8 săpt.
Hardback (1) 39154 lei  6-8 săpt.
  Springer – 25 iul 1989 39154 lei  6-8 săpt.

Din seria Springer Texts in Statistics

Preț: 38134 lei

Nou

Puncte Express: 572

Preț estimativ în valută:
6749 7915$ 5917£

Carte tipărită la comandă

Livrare economică 26 ianuarie-09 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461389163
ISBN-10: 146138916X
Pagini: 440
Ilustrații: XI, 422 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.61 kg
Ediția:Softcover reprint of the original 1st ed. 1989
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

IV: Sampling and distributions.- Overview.- Lesson 1 Sampling and statistics.- 2 Transformations of real random variables.- 3 Transformations of random vectors.- 4 Sampling distributions in normal populations-I.- 5 Sampling distributions in normal populations-II.- 6 Order statistics.- 7 Sufficient statistics-I.- 8 Sufficient statistics-II.- 9 Complete statistics.- 10 Exponential families-I.- 11 Exponential families-II.- V: Statistical estimation.- Overview.- Lesson 1 Point estimation of parameters.- 2 Conditional expectation.- 3 Uniformly minimum variance unbiased estimators.- 4 Efficient estimators.- 5 Unbiased estimation: the vector case.- 6 Two methods of point estimation.- 7 Maximum likelihood estimation.- 8 Confidence interval estimation-I.- 9 Confidence interval estimation-II.- 10 Consistent estimators.- 11 Consistency of maximum likelihood estimators.- 12 Asymptotic normality.- 13 Asymptotic normality of maximum likelihood estimators.- 14 Asymptotic efficiency and large sample confidence intervals.- VI: Testing hypotheses.- Overview.- Lesson 1 Neyman-Pearson theory-I.- 2 Neyman-Pearson theory-II.- 3 Testing with monotone likelihood ratios.- 4 Testing when the support contains parameters.- 5 Unbiased tests.- 6 Quadratic forms in normal random variables.- 7 Likelihood ratio tests-I.- 8 One-way analysis of variance.- 9 Likelihood ratio tests-II.- 10 LRT-asymptotic distributions.- 11 Summary of tests for normal populations.- 12 Tests for two-by-two tables.- VII: Special topics.- Overview.- Lesson 1 Minimax and Bayes estimators-I.- 2 Minimax and Bayes estimators-II.- 3 Equivariant estimators.- 4 Simple linear regression-I.- 5 Simple linear regression-II.- 6 Sufficient statistics and uniformly most powerful tests.- 7 Sequential probability ratio tests.- 8 A test by Mann, Whitney, Wilcoxon.- 9 Tests for paired comparisons.- 10 Tests of Kolmogorov, Smirnov type.- 11 Categorical data.- Tables.- References.

Recenzii

"This two-volume text is designed for a two-semester course in mathematical statistics at the senior/graduate level... The authors have succeeded in presenting the material with clarity and enough details of analytical niceties." (Mathematical Reviews)