Computer Security – ESORICS 2022: 27th European Symposium on Research in Computer Security, Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part III: Lecture Notes in Computer Science, cartea 13556
Editat de Vijayalakshmi Atluri, Roberto Di Pietro, Christian D. Jensen, Weizhi Mengen Limba Engleză Paperback – 24 sep 2022
Part I: Blockchain security; privacy; crypto; attacks; sidechannels; Part II: Anonymity; cloud security; access control; authentication; digital signatures; IoT security; applications;
Part III: Formal analysis; Web security; hardware security; multiparty computation; ML techniques; cyber-physical systems security; network and software security; posters.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 337.66 lei 43-57 zile | |
| Springer Nature Switzerland – 23 sep 2022 | 337.66 lei 43-57 zile | |
| Springer Nature Switzerland – 24 sep 2022 | 344.30 lei 43-57 zile | |
| Springer International Publishing – 25 sep 2022 | 588.01 lei 43-57 zile |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei -
Preț: 395.25 lei - 20%
Preț: 327.36 lei - 20%
Preț: 556.96 lei - 20%
Preț: 400.77 lei - 15%
Preț: 558.12 lei - 20%
Preț: 328.94 lei - 20%
Preț: 340.04 lei - 20%
Preț: 487.46 lei - 20%
Preț: 629.71 lei - 20%
Preț: 386.08 lei - 20%
Preț: 489.11 lei - 20%
Preț: 620.33 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 782.57 lei - 20%
Preț: 679.09 lei - 20%
Preț: 330.54 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 435.28 lei - 20%
Preț: 375.72 lei - 20%
Preț: 342.61 lei - 20%
Preț: 432.78 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 373.80 lei - 20%
Preț: 400.17 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 984.64 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 793.92 lei - 20%
Preț: 324.19 lei - 20%
Preț: 733.68 lei - 20%
Preț: 336.86 lei - 20%
Preț: 327.36 lei - 20%
Preț: 573.45 lei - 20%
Preț: 558.53 lei - 20%
Preț: 850.42 lei - 20%
Preț: 560.93 lei - 20%
Preț: 560.93 lei - 20%
Preț: 631.96 lei - 20%
Preț: 568.70 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 344.30 lei
Preț vechi: 430.38 lei
-20%
Puncte Express: 516
Preț estimativ în valută:
60.91€ • 71.82$ • 52.90£
60.91€ • 71.82$ • 52.90£
Carte tipărită la comandă
Livrare economică 23 martie-06 aprilie
Specificații
ISBN-13: 9783031171420
ISBN-10: 303117142X
Pagini: 789
Ilustrații: XXIII, 789 p. 248 illus., 173 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.12 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 303117142X
Pagini: 789
Ilustrații: XXIII, 789 p. 248 illus., 173 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.12 kg
Ediția:1st ed. 2022
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Formal Analysis.- A Formal Analysis of the FIDO2 Protocols.- Composable Security Treatment of ECVRF and Batch Verifications.- Effcient Proofs of Knowledge for Threshold Relations.- A tale of two models: formal verification of KEMTLS via Tamarin.- Web Security.- Browser-based CPU Fingerprinting.- Polymorphic Protocols at the Example of Mitigating Web Bots.- Unlinkable Delegation of WebAuthn Credentials.- Large Scale Analysis of DoH Deployment on the Internet.- Equivocal URLs: Understanding the Fragmented Space of URL Parser Implementations.- Exploring the Characteristics and Security Risks of Emerging Emoji Domain Names.- Hardware Security.- CPU Port Contention Without SMT.- Protocols for a Two-Tiered Trusted Computing Base.- Using Memristor Arrays as Physical Unclonable Functions.- Multiparty Computation.- SecureBiNN: 3-Party Secure Computation for Binarized Neural Network Inference.- MixedTechnique Multi-Party Computations Composed of Two-Party Computations.- PEA: Practical Private Epistasis Analysis using MPC.- ML Techniques.- Hide and Seek: on the Stealthiness of Attacks against Deep Learning Systems.- Precise Extraction of Deep Learning Models via Side-Channel Attacks on Edge/Endpoint Devices.- Real-time Adversarial Perturbations against Deep Reinforcement Learning Policies: Attacks and Defenses.- FLMJR: Improving Robustness of Federated Learning via Model Stability.- MaleficNet: Hiding Malware into Deep Neural Networks using Spread-Spectrum Channel Coding.- Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning.- MLFM: Machine Learning Meets Formal Method for Faster Identification of Security Breaches in Network Functions Virtualization (NFV).- Cyber-Physical Systems Security.- Perspectives from a Comprehensive Evaluation of Reconstruction-based Anomaly Detection in Industrial Control Systems.- A Novel High-performance Implementation of CRYSTALS-Kyber with AI Accelerator.- From Click To Sink: utilizing AIS for command and control in maritime cyber attacks.- Effcient Hash-Based Redactable Signature for Smart Grid Applications.- Can Industrial Intrusion Detection Be SIMPLE.- For your Voice Only: Exploiting Side Channels in Voice Messaging for Environment Detection.- Towards Effcient Auditing for Real-Time Systems.- Network and Software Security.- Towards a Systematic and Automatic Use of State Machine Inference to Uncover Security Flaws and Fingerprint TLS Stacks.- PanoptiCANs - Adversary-resilient Architectures for Controller Area Networks.- Detecting Cross-Language Memory Management Issues in Rust.- Reach Me if You Can: On Native Vulnerability Reachability in Android Apps.- Extensible Virtual Call Integrity.- Posters.- Is your password sexist? A gamification-based analysis of the cultural context of leaked passwords.- A Fast, Practical and Simple Shortest Path Protocol for Multiparty Computation.- Audio Spoofing Detection Using Constant-Q Spectral Sketches and Parallel-Attention SE-ResNet.- MixCT: Mixing Confidential Transactions from Homomorphic Commitment.- Multi-Freq-LDPy: Multiple Frequency Estimation Under Local Differential Privacy in Python.- The Devil is in the GAN: Backdoor Attacks and Defenses in Deep Generative Models.