Cantitate/Preț
Produs

Carleman Estimates and Applications to Uniqueness and Control Theory: Progress in Nonlinear Differential Equations and Their Applications, cartea 46

Editat de Feruccio Colombini, Claude Zuily
en Limba Engleză Paperback – 23 oct 2012

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61223 lei  6-8 săpt.
  Birkhäuser Boston – 23 oct 2012 61223 lei  6-8 săpt.
Hardback (1) 61819 lei  6-8 săpt.
  Birkhäuser Boston – 21 iun 2001 61819 lei  6-8 săpt.

Din seria Progress in Nonlinear Differential Equations and Their Applications

Preț: 61223 lei

Preț vechi: 72027 lei
-15% Nou

Puncte Express: 918

Preț estimativ în valută:
10832 12639$ 9470£

Carte tipărită la comandă

Livrare economică 17-31 ianuarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461266600
ISBN-10: 1461266602
Pagini: 224
Ilustrații: VII, 211 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Stabilization for the Wave Equation on Exterior Domains.- Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity.- Microlocal Defect Measures for Systems.- Strong Uniqueness for Laplace and Bi-Laplace Operators in the Limit Case.- Stabilization for the Semilinear Wave Equation in Bounded Domains.- Recent Results on Unique Continuation for Second Order Elliptic Equations.- Strong Uniqueness for Fourth Order Elliptic Differential Operators.- Second Microlocalization Methods for Degenerate Cauchy—Riemann Equations.- A Gärding Inequality on a Manifold with Boundary.- Some Necessary Conditions for Hyperbolic Systems.- Strong Unique Continuation Property for First Order Elliptic Systems.- Observability of the Schrödinger Equation.- Unique Continuation from Sets of Positive Measure.- Some Results and Open Problems on the Controllability of Linear and Semilinear Heat Equations.