Bioinformatics Research and Applications: 20th International Symposium, ISBRA 2024, Kunming, China, July 19–21, 2024, Proceedings, Part III: Lecture Notes in Computer Science, cartea 14956
Editat de Wei Peng, Zhipeng Cai, Pavel Skumsen Limba Engleză Paperback – 10 iul 2024
The 93 full papers included in this book were carefully reviewed and selected from 236 submissions. The symposium provides a forum for the exchange of ideas and results among researchers, developers, and practitioners working on all aspects of bioinformatics and computational biology and their applications.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 937.01 lei 38-44 zile | |
| Springer Nature Singapore – 10 iul 2024 | 937.01 lei 38-44 zile | |
| Springer Nature Singapore – 10 iul 2024 | 959.26 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 15%
Preț: 558.12 lei - 20%
Preț: 573.45 lei - 20%
Preț: 330.54 lei - 20%
Preț: 620.33 lei - 20%
Preț: 400.77 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 629.71 lei - 20%
Preț: 328.94 lei - 20%
Preț: 375.72 lei - 20%
Preț: 568.70 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 489.11 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 782.57 lei - 20%
Preț: 336.86 lei - 20%
Preț: 560.93 lei - 20%
Preț: 850.42 lei - 20%
Preț: 432.78 lei - 20%
Preț: 342.61 lei - 20%
Preț: 631.96 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 487.46 lei - 20%
Preț: 400.17 lei - 20%
Preț: 984.64 lei - 20%
Preț: 556.96 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 793.92 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 679.09 lei - 20%
Preț: 558.53 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 560.93 lei - 20%
Preț: 324.19 lei - 20%
Preț: 1079.23 lei - 20%
Preț: 735.28 lei - 20%
Preț: 373.80 lei -
Preț: 395.25 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 937.01 lei
Preț vechi: 1171.26 lei
-20%
Puncte Express: 1406
Preț estimativ în valută:
165.65€ • 196.44$ • 143.69£
165.65€ • 196.44$ • 143.69£
Carte tipărită la comandă
Livrare economică 07-13 martie
Specificații
ISBN-13: 9789819750863
ISBN-10: 9819750865
Pagini: 147
Ilustrații: XIV, 147 p. 40 illus., 32 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Bioinformatics
Locul publicării:Singapore, Singapore
ISBN-10: 9819750865
Pagini: 147
Ilustrații: XIV, 147 p. 40 illus., 32 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Bioinformatics
Locul publicării:Singapore, Singapore
Cuprins
.- Feddaw: Dual Adaptive Weighted Federated Learning for Non-IID Medical Data.
.- LoopNetica: predicting chromatin loops using convolutional neural networks and attention mechanisms.
.- Probabilistic and Machine Learning Models for the Protein Scaffold Gap Filling Problem.
.- Patient Anticancer Drug Response Prediction based on Single-Cell Deconvolution.
.- A Data Set of Paired Structural Segments between Protein Data Bank and AlphaFold DB for Medium-Resolution Cryo-EM Density Maps: A Gap in Overall Structural Quality.
.- PmmNDD: Predicting the Pathogenicity of Missense Mutations in Neurodegenerative Diseases via Ensemble Learning.
.- Improved Inapproximability Gap and Approximation Algorithm for Scaffold Filling to Maximize Increased Duo-preservations.
.- Residual Spatio-Temporal Attention based Prototypical Network for Rare Arrhythmia Classification.
.- SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for comprehensive quantitative metaproteomics.
.- PrSMBooster:Improving the Accuracy of Top-down Proteoform Characterization using Deep Learning Rescoring Models.
.- FCMEDriver: identifing cancer driver gene by combining mutual exclusivity of embedded features and optimized mutation frequency score.
.- LoopNetica: predicting chromatin loops using convolutional neural networks and attention mechanisms.
.- Probabilistic and Machine Learning Models for the Protein Scaffold Gap Filling Problem.
.- Patient Anticancer Drug Response Prediction based on Single-Cell Deconvolution.
.- A Data Set of Paired Structural Segments between Protein Data Bank and AlphaFold DB for Medium-Resolution Cryo-EM Density Maps: A Gap in Overall Structural Quality.
.- PmmNDD: Predicting the Pathogenicity of Missense Mutations in Neurodegenerative Diseases via Ensemble Learning.
.- Improved Inapproximability Gap and Approximation Algorithm for Scaffold Filling to Maximize Increased Duo-preservations.
.- Residual Spatio-Temporal Attention based Prototypical Network for Rare Arrhythmia Classification.
.- SEMQuant: Extending Sipros-Ensemble with Match-Between-Runs for comprehensive quantitative metaproteomics.
.- PrSMBooster:Improving the Accuracy of Top-down Proteoform Characterization using Deep Learning Rescoring Models.
.- FCMEDriver: identifing cancer driver gene by combining mutual exclusivity of embedded features and optimized mutation frequency score.