Asymptotic Theory of Statistical Inference for Time Series: Springer Series in Statistics
Autor Masanobu Taniguchi, Yoshihide Kakizawaen Limba Engleză Paperback – 23 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 972.56 lei 6-8 săpt. | |
| Springer – 23 oct 2012 | 972.56 lei 6-8 săpt. | |
| Hardback (1) | 976.81 lei 6-8 săpt. | |
| Springer – 11 aug 2000 | 976.81 lei 6-8 săpt. |
Din seria Springer Series in Statistics
- 18%
Preț: 923.31 lei - 20%
Preț: 512.80 lei -
Preț: 376.01 lei - 15%
Preț: 426.92 lei - 18%
Preț: 752.32 lei - 20%
Preț: 1896.60 lei - 18%
Preț: 858.10 lei - 18%
Preț: 976.81 lei -
Preț: 376.37 lei - 18%
Preț: 1330.29 lei - 18%
Preț: 1165.92 lei - 18%
Preț: 1333.82 lei - 15%
Preț: 563.80 lei - 18%
Preț: 763.49 lei - 15%
Preț: 623.05 lei - 18%
Preț: 954.38 lei - 15%
Preț: 621.17 lei -
Preț: 376.01 lei - 15%
Preț: 622.11 lei - 18%
Preț: 915.43 lei - 18%
Preț: 1071.18 lei - 18%
Preț: 859.03 lei - 15%
Preț: 521.02 lei - 18%
Preț: 918.17 lei - 15%
Preț: 618.99 lei - 15%
Preț: 618.34 lei - 18%
Preț: 1761.16 lei - 15%
Preț: 618.50 lei - 18%
Preț: 968.52 lei - 18%
Preț: 1188.99 lei - 18%
Preț: 1176.08 lei - 18%
Preț: 1274.37 lei - 18%
Preț: 877.81 lei - 18%
Preț: 919.38 lei -
Preț: 376.75 lei - 15%
Preț: 621.17 lei - 18%
Preț: 1331.68 lei - 18%
Preț: 906.32 lei - 15%
Preț: 627.62 lei - 18%
Preț: 1196.88 lei - 18%
Preț: 1500.79 lei - 18%
Preț: 974.24 lei - 18%
Preț: 1183.54 lei - 18%
Preț: 1013.07 lei - 18%
Preț: 775.16 lei - 18%
Preț: 699.51 lei - 18%
Preț: 1026.72 lei - 15%
Preț: 624.77 lei - 18%
Preț: 753.63 lei
Preț: 972.56 lei
Preț vechi: 1186.05 lei
-18% Nou
Puncte Express: 1459
Preț estimativ în valută:
172.12€ • 201.86$ • 150.92£
172.12€ • 201.86$ • 150.92£
Carte tipărită la comandă
Livrare economică 24 ianuarie-07 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461270287
ISBN-10: 1461270286
Pagini: 684
Ilustrații: XVII, 662 p.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 0.94 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 1461270286
Pagini: 684
Ilustrații: XVII, 662 p.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 0.94 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Elements of Stochastic Processes.- 1.1 Introduction.- 1.2 Stochastic Processes.- 1.3 Limit Theorems.- Problems.- 2 Local Asymptotic Normality for Stochastic Processes.- 2.1 General Results for Local Asymptotic Normality.- 2.2 Local Asymptotic Normality for Linear Processes.- Problems.- 3 Asymptotic Theory of Estimation and Testing for Stochastic Processes.- 3.1 Asymptotic Theory of Estimation and Testing for Linear Processes.- 3.2 Asymptotic Theory for Nonlinear Stochastic Models.- 3.3 Asymptotic Theory for Continuous Time Processes.- Problems.- 4 Higher Order Asymptotic Theory for Stochastic Processes.- 4.1 Introduction to Higher Order Asymptotic Theory.- 4.2 Valid Asymptotic Expansions.- 4.3 Higher Order Asymptotic Estimation Theory for Discrete Time Processes in View of Statistical Differential Geometry.- 4.4 Higher Order Asymptotic Theory for Continuous Time Processes.- 4.5 Higher Order Asymptotic Theory for Testing Problems.- 4.6 Higher Order Asymptotic Theory for Normalizing Transformations.- 4.7 Generalization of LeCam’s Third Lemma and Higher Order Asymptotics of Iterative Methods.- Problems.- 5 Asymptotic Theory for Long-Memory Processes.- 5.1 Some Elements of Long-Memory Processes.- 5.2 Limit Theorems for Fundamental Statistics.- 5.3 Estimation and Testing Theory for Long-Memory Processes.- 5.4 Regression Models with Long-Memory Disturbances.- 5.5 Semiparametric Analysis and the LAN Approach.- Problems.- 6 Statistical Analysis Based on Functionals of Spectra.- 6.1 Estimation of Nonlinear Functionals of Spectra.- 6.2 Application to Parameter Estimation for Stationary Processes.- 6.3 Asymptotically Efficient Nonparametric Estimation of Functionals of Spectra in Gaussian Stationary Processes.- 6.4 Robustness in the Frequency Domain Approach.- 6.5 NumericalExamples.- Problems.- 7 Discriminant Analysis for Stationary Time Series.- 7.1 Basic Formulation.- 7.2 Standard Methods for Gaussian Stationary Processes.- 7.3 Discriminant Analysis for Non-Gaussian Linear Processes.- 7.4 Nonparametric Approach for Discriminant Analysis.- 7.5 Parametric Approach for Discriminant Analysis.- 7.6 Derivation of Spectral Expressions to Divergence Measures Between Gaussian Stationary Processes.- 7.7 Miscellany.- Problems.- 8 Large Deviation Theory and Saddlepoint Approximation for Stochastic Processes.- 8.1 Large Deviation Theorem 538 8.2 Asymptotic Efficiency for Gaussian Stationary Processes:Large Deviation Approach.- 8.3 Large Deviation Results for an Ornstein-Uhlenbeck Process.- 8.4 Saddlepoint Approximations for Stochastic Processes.- Problems.- A.1 Mathematics.- A.2 Probability.- A.3 Statistics.
Recenzii
From the reviews:
MATHEMATICAL REVIEWS
"It is valuable both as an advanced graduate level text and as a reference for researchers?he book can be most strongly recommended."
MATHEMATICAL REVIEWS
"It is valuable both as an advanced graduate level text and as a reference for researchers?he book can be most strongly recommended."