Asymptotic Methods in Statistical Decision Theory: Springer Series in Statistics
Autor Lucien Le Camen Limba Engleză Hardback – 6 aug 1986
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 2028.04 lei 6-8 săpt. | |
| Springer – 14 oct 2011 | 2028.04 lei 6-8 săpt. | |
| Hardback (1) | 1896.60 lei 3-5 săpt. | +51.04 lei 7-13 zile |
| Springer – 6 aug 1986 | 1896.60 lei 3-5 săpt. | +51.04 lei 7-13 zile |
Din seria Springer Series in Statistics
- 18%
Preț: 923.31 lei - 20%
Preț: 511.16 lei -
Preț: 376.01 lei - 15%
Preț: 426.92 lei - 18%
Preț: 752.32 lei - 18%
Preț: 858.10 lei - 18%
Preț: 976.81 lei -
Preț: 376.37 lei - 18%
Preț: 1330.29 lei - 18%
Preț: 1165.92 lei - 18%
Preț: 1333.82 lei - 15%
Preț: 563.80 lei - 18%
Preț: 763.49 lei - 15%
Preț: 623.05 lei - 18%
Preț: 954.38 lei - 15%
Preț: 621.17 lei -
Preț: 376.01 lei - 15%
Preț: 622.11 lei - 18%
Preț: 915.43 lei - 18%
Preț: 1071.18 lei - 18%
Preț: 859.03 lei - 15%
Preț: 521.02 lei - 18%
Preț: 918.17 lei - 15%
Preț: 618.99 lei - 15%
Preț: 618.34 lei - 18%
Preț: 1761.16 lei - 15%
Preț: 618.50 lei - 18%
Preț: 968.52 lei - 18%
Preț: 1188.99 lei - 18%
Preț: 1176.08 lei - 18%
Preț: 1274.37 lei - 18%
Preț: 877.81 lei - 18%
Preț: 919.38 lei -
Preț: 376.75 lei - 15%
Preț: 621.17 lei - 18%
Preț: 1331.68 lei - 18%
Preț: 906.32 lei - 15%
Preț: 627.62 lei - 18%
Preț: 1196.88 lei - 18%
Preț: 1500.79 lei - 18%
Preț: 974.24 lei - 18%
Preț: 1183.54 lei - 18%
Preț: 1013.07 lei - 18%
Preț: 775.16 lei - 18%
Preț: 699.51 lei - 18%
Preț: 1026.72 lei - 15%
Preț: 624.77 lei - 18%
Preț: 753.63 lei
Preț: 1896.60 lei
Preț vechi: 2370.75 lei
-20% Nou
Puncte Express: 2845
Preț estimativ în valută:
335.56€ • 391.52$ • 293.38£
335.56€ • 391.52$ • 293.38£
Carte disponibilă
Livrare economică 26 decembrie 25 - 09 ianuarie 26
Livrare express 12-18 decembrie pentru 61.03 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387963075
ISBN-10: 0387963073
Pagini: 742
Ilustrații: XXVI, 742 p.
Dimensiuni: 156 x 234 x 45 mm
Greutate: 1.23 kg
Ediția:1986
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387963073
Pagini: 742
Ilustrații: XXVI, 742 p.
Dimensiuni: 156 x 234 x 45 mm
Greutate: 1.23 kg
Ediția:1986
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Experiments—Decision Spaces.- 1 Introduction.- 2 Vector Lattices—L-Spaces—Transitions.- 3 Experiments—Decision Procedures.- 4 A Basic Density Theorem.- 5 Building Experiments from Other Ones.- 6 Representations—Markov Kernels.- 2 Some Results from Decision Theory: Deficiencies.- 1 Introduction.- 2 Characterization of the Spaces of Risk Functions: Minimax Theorem.- 3 Deficiencies; Distances.- 4 The Form of Bayes Risks—Choquet Lattices.- 3 Likelihood Ratios and Conical Measures.- 1 Introduction.- 2 Homogeneous Functions of Measures.- 3 Deficiencies for Binary Experiments: Isometries.- 4 Weak Convergence of Experiments.- 5 Boundedly Complete Experiments.- 6 Convolutions: Hellinger Transforms.- 7 The Blackwell-Sherman-Stein Theorem.- 4 Some Basic Inequalities.- 1 Introduction.- 2 Hellinger Distances: L1-Norm.- 3 Approximation Properties for Likelihood Ratios.- 4 Inequalities for Conditional Distributions.- 5 Sufficiency and Insufficiency.- 1 Introduction.- 2 Projections and Conditional Expectations.- 3 Equivalent Definitions for Sufficiency.- 4 Insufficiency.- 5 Estimating Conditional Distributions.- 6 Domination, Compactness, Contiguity.- 1 Introduction.- 2 Definitions and Elementary Relations.- 3 Contiguity.- 4 Strong Compactness and a Result of D. Lindae.- 7 Some Limit Theorems.- 1 Introduction.- 2 Convergence in Distribution or in Probability.- 3 Distinguished Sequences of Statistics.- 4 Lower-Semicontinuity for Spaces of Risk Functions.- 5 A Result on Asymptotic Admissibility.- 8 Invariance Properties.- 1 Introduction.- 2 The Markov—Kakutani Fixed Point Theorem.- 3 A Lifting Theorem and Some Applications.- 4 Automatic Invariance of Limits.- 5 Invariant Exponential Families.- 6 The Hunt-Stein Theorem and Related Results.- 9 Infinitely Divisible,Gaussian, and Poisson Experiments.- 1 Introduction.- 2 Infinite Divisibility.- 3 Gaussian Experiments.- 4 Poisson Experiments.- 5 A Central Limit Theorem.- 10 Asymptotically Gaussian Experiments: Local Theory.- 1 Introduction.- 2 Convergence to a Gaussian Shift Experiment.- 3 A Framework which Arises in Many Applications.- 4 Weak Convergence of Distributions.- 5 An Application of a Martingale Limit Theorem.- 6 Asymptotic Admissibility and Minimaxity.- 11 Asymptotic Normality—Global.- 1 Introduction.- 2 Preliminary Explanations.- 3 Construction of Centering Variables.- 4 Definitions Relative to Quadratic Approximations.- 5 Asymptotic Properties of the Centerings $$\hat{Z}$$.- 6 The Asymptotically Gaussian Case.- 7 Some Particular Cases.- 8 Reduction to the Gaussian Case by Small Distortions.- 9 The Standard Tests and Confidence Sets.- 10 Minimum ?2 and Relatives.- 12 Posterior Distributions and Bayes Solutions.- 1 Introduction.- 2 Inequalities on Conditional Distributions.- 3 Asymptotic behavior of Bayes Procedures.- 4 Approximately Gaussian Posterior Distributions.- 13 An Approximation Theorem for Certain Sequential Experiments.- 1 Introduction.- 2 Notations and Assumptions.- 3 Basic Auxiliary Lemmas.- 4 Reduction Theorems.- 5 Remarks on Possible Applications.- 14 Approximation by Exponential Families.- 1 Introduction.- 2 A Lemma on Approximate Sufficiency.- 3 Homogeneous Experiments of Finite Rank.- 4 Approximation by Experiments of Finite Rank.- 5 Construction of Distinguished Sequences of Estimates.- 15 Sums of Independent Random Variables.- 1 Introduction.- 2 Concentration Inequalities.- 3 Compactness and Shift-Compactness.- 4 Poisson Exponentials and Approximation Theorems.- 5 Limit Theorems and Related Results.- 6 Sums of Independent Stochastic Processes.- 16Independent Observations.- 1 Introduction.- 2 Limiting Distributions for Likelihood Ratios.- 3 Conditions for Asymptotic Normality.- 4 Tests and Distances.- 5 Estimates for Finite Dimensional Parameter Spaces.- 6 The Risk of Formal Bayes Procedures.- 7 Empirical Measures and Cumulatives.- 8 Empirical Measures on Vapnik-?ervonenkis Classes.- 17 Independent Identically Distributed Observations.- 1 Introduction.- 2 Hilbert Spaces Around a Point.- 3 A Special Role for $$\sqrt{n}$$: Differentiability in Quadratic Mean.- 4 Asymptotic Normality for Rates Other than $$\sqrt{n}$$.- 5 Existence of Consistent Estimates.- 6 Estimates Converging at the $$\sqrt{n}$$-Rate.- 7 The Behavior of Posterior Distributions.- 8 Maximum Likelihood.- 9 Some Cases where the Number of Observations Is Random.- Appendix: Results from Classical Analysis.- 1 The Language of Set Theory.- 2 Topological Spaces.- 3 Uniform Spaces.- 4 Metric Spaces.- 5 Spaces of Functions.- 6 Vector Spaces.- 7 Vector Lattices.- 8 Vector Lattices Arising from Experiments.- 9 Lattices of Numerical Functions.- 10 Extensions of Positive Linear Functions.- 11 Smooth Linear Functionals.- 12 Derivatives and Tangents.