Architecture of Computing Systems: Lecture Notes in Computer Science
Editat de Martin Schulz, Carsten Trinitis, Nikela Papadopoulou, Thilo Piontecken Limba Engleză Paperback – 14 dec 2022
The 18 full papers in this volume were carefully reviewed and selected from 35 submissions.
ARCS provides a platform covering newly emerging and cross-cutting topics, such as autonomous and ubiquitous systems, reconfigurable computing and acceleration, neural networks and artificial intelligence. The selected papers cover a variety of topics from the ARCS core domains, including energy efficiency, applied machine learning, hardware and software system security, reliable and fault-tolerant systems and organic computing.
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei -
Preț: 395.25 lei - 20%
Preț: 327.36 lei - 20%
Preț: 556.96 lei - 20%
Preț: 400.77 lei - 15%
Preț: 558.12 lei - 20%
Preț: 328.94 lei - 20%
Preț: 340.04 lei - 20%
Preț: 487.46 lei - 20%
Preț: 629.71 lei - 20%
Preț: 386.08 lei - 20%
Preț: 489.11 lei - 20%
Preț: 620.33 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 782.57 lei - 20%
Preț: 679.09 lei - 20%
Preț: 330.54 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 435.28 lei - 20%
Preț: 375.72 lei - 20%
Preț: 342.61 lei - 20%
Preț: 432.78 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 373.80 lei - 20%
Preț: 400.17 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 984.64 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 793.92 lei - 20%
Preț: 324.19 lei - 20%
Preț: 733.68 lei - 20%
Preț: 336.86 lei - 20%
Preț: 327.36 lei - 20%
Preț: 573.45 lei - 20%
Preț: 558.53 lei - 20%
Preț: 850.42 lei - 20%
Preț: 560.93 lei - 20%
Preț: 560.93 lei - 20%
Preț: 631.96 lei - 20%
Preț: 568.70 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 390.65 lei
Preț vechi: 488.31 lei
-20%
Puncte Express: 586
Preț estimativ în valută:
69.08€ • 81.60$ • 59.52£
69.08€ • 81.60$ • 59.52£
Carte disponibilă
Livrare economică 27 februarie-13 martie
Livrare express 13-19 februarie pentru 33.40 lei
Specificații
ISBN-13: 9783031218668
ISBN-10: 3031218663
Pagini: 308
Ilustrații: XVII, 287 p. 137 illus., 98 illus. in color.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031218663
Pagini: 308
Ilustrații: XVII, 287 p. 137 illus., 98 illus. in color.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.47 kg
Ediția:1st edition 2022
Editura: Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Energy Efficiency.- Energy Efficient Frequency Scaling on GPUs in Heterogeneous HPC Systems.- Dual-IS: Instruction Set Modality for Efficient Instruction Level Parallelism.- Pasithea-1: An Energy-Efficient Self-Contained CGRA With RISC-Like ISA.- Applied Machine Learning.- Orchestrated Co-Scheduling, Resource Partitioning, and Power Capping on CPU-GPU Heterogeneous Systems via Machine Learning.- FPGA-based Dynamic Deep Learning Acceleration for Real-time Video Analytics.- Advanced Computing Techniques.- Effects of Approximate Computing on Workload Characteristics.- QPU-System Co-Design for Quantum HPC Accelerators.- Hardware and Software System Security.- Protected Functions: User Space Privileged Function Calls.- Using Look Up Table Content as Signatures to Identify IP Cores in Modern FPGAs.- Hardware Isolation Support for Low-Cost SoC-FPGAs.- Reliable and Fault-tolerant systems.- Memristor based FPGAs: Understanding the Effect of Configuration Memory Faults.- On the Reliability of Real-time Operating System on Embedded Soft Processor for Space Applications.- Special Track: Organic Computing.- NDNET: a Unified Framework for Anomaly and Novelty Detection.- Organic Computing to Improve the Dependability of an Automotive Environment.- A context aware and self-improving monitoring system for field vegetables.- Semi-Model-Based Reinforcement Learning in Organic Computing Systems.- Deep Reinforcement Learning with a Classifier System – First Steps.- GAE-LCT: A run-time GA-based Classifier Evolution Method for Hardware LCT controlled SoC Performance-Power Optimization.