An Introduction to Algebraic Topology (Graduate Texts in Mathematics, nr. 119)

De (autor)
Notă GoodReads:
en Limba Engleză Carte Hardback – 22 Jul 1998
This book offers a detailed exposition, with exercises, of the basic ideas of algebraic topology: homology, homotopy groups, and cohomology rings. Avoiding excessive generality, the author explains the origins of abstract concepts as they are introduced.
Citește tot Restrânge
Toate formatele și edițiile
Toate formatele și edițiile Preț Express
Carte Paperback (1) 34486 lei  Economic 5-7 săpt. +11801 lei  10-20 zile
  Springer – 05 Oct 2011 34486 lei  Economic 5-7 săpt. +11801 lei  10-20 zile
Carte Hardback (1) 31933 lei  Economic 15-21 zile +1125 lei  3-7 zile
  Springer – 22 Jul 1998 31933 lei  Economic 15-21 zile +1125 lei  3-7 zile

Din seria Graduate Texts in Mathematics

Preț: 31933 lei

Preț vechi: 41471 lei

Puncte Express: 479

Preț estimativ în valută:
6429 7125$ 5888£

Carte disponibilă

Livrare economică 05-11 septembrie
Livrare express 24-28 august pentru 2124 lei

Preluare comenzi: 021 569.72.76


ISBN-13: 9780387966786
ISBN-10: 0387966781
Pagini: 438
Ilustrații: 1
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.84 kg
Ediția: 1st ed. 1988. Corr. 4th printing 1998
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării: New York, NY, United States

Public țintă



0 Introduction.- Notation.- Brouwer Fixed Point Theorem.- Categories and Functors.- 1.Some Basic Topological Notions.- Homotopy.- Convexity, Contractibility, and Cones.- Paths and Path Connectedness.- 2 Simplexes.- Affine Spaces.- Affine Maps.- 3 The Fundamental Group.- The Fundamental Groupoid.- The Functor ?1.- ?1(S1).- 4 Singular Homology.- Holes and Green’s Theorem.- Free Abelian Groups.- The Singular Complex and Homology Functors.- Dimension Axiom and Compact Supports.- The Homotopy Axiom.- The Hurewicz Theorem.- 5 Long Exact Sequences.- The Category Comp.- Exact Homology Sequences.- Reduced Homology.- 6 Excision and Applications.- Excision and Mayer-Vietoris.- Homology of Spheres and Some Applications.- Barycentric Subdivision and the Proof of Excision.- More Applications to Euclidean Space.- 7 Simplicial Complexes.- Definitions.- Simplicial Approximation.- Abstract Simplicial Complexes.- Simplicial Homology.- Comparison with Singular Homology.- Calculations.- Fundamental Groups of Polyhedra.- The Seifert-van Kampen Theorem.- 8 CW Complexes.- Hausdorff Quotient Spaces.- Attaching Cells.- Homology and Attaching Cells.- CW Complexes.- Cellular Homology.- 9 Natural Transformations.- Definitions and Examples.- Eilenberg-Steenrod Axioms.- Chain Equivalences.- Acyclic Models.- Lefschetz Fixed Point Theorem.- Tensor Products.- Universal Coefficients.- Eilenberg-Zilber Theorem and the Künneth Formula.- 10 Covering Spaces.- Basic Properties.- Covering Transformations.- Existence.- Orbit Spaces.- 11 Homotopy Groups.- Function Spaces.- Group Objects and Cogroup Objects.- Loop Space and Suspension.- Homotopy Groups.- Exact Sequences.- Fibrations.- A Glimpse Ahead.- 12 Cohomology.- Differential Forms.- Cohomology Groups.- Universal Coefficients Theorems for Cohomology.- Cohomology Rings.- Computations and Applications.- Notation.