Topics in the Theory of Lifting: ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE, cartea 48
Autor Alexandra Ionescu Tulcea, C. Ionescu Tulceaen Limba Engleză Paperback – 3 oct 2013
Din seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
- 18%
Preț: 1065.57 lei -
Preț: 425.17 lei -
Preț: 393.85 lei -
Preț: 465.97 lei -
Preț: 362.68 lei -
Preț: 472.92 lei - 15%
Preț: 676.82 lei -
Preț: 332.66 lei -
Preț: 368.59 lei -
Preț: 368.43 lei - 15%
Preț: 611.89 lei -
Preț: 471.15 lei -
Preț: 373.03 lei - 15%
Preț: 474.60 lei -
Preț: 378.41 lei -
Preț: 363.61 lei -
Preț: 369.74 lei -
Preț: 397.35 lei -
Preț: 365.82 lei -
Preț: 396.99 lei -
Preț: 371.00 lei -
Preț: 399.60 lei -
Preț: 362.30 lei -
Preț: 365.09 lei -
Preț: 464.80 lei -
Preț: 398.66 lei - 15%
Preț: 557.33 lei - 15%
Preț: 612.05 lei -
Preț: 403.10 lei - 15%
Preț: 556.10 lei -
Preț: 366.95 lei -
Preț: 368.59 lei -
Preț: 361.22 lei -
Preț: 164.99 lei -
Preț: 144.13 lei -
Preț: 366.56 lei -
Preț: 397.55 lei -
Preț: 394.58 lei -
Preț: 366.76 lei -
Preț: 368.59 lei -
Preț: 462.46 lei -
Preț: 361.37 lei -
Preț: 370.06 lei -
Preț: 174.60 lei -
Preț: 393.22 lei -
Preț: 345.94 lei -
Preț: 362.15 lei
Preț: 367.85 lei
Nou
Puncte Express: 552
Preț estimativ în valută:
65.09€ • 76.33$ • 57.16£
65.09€ • 76.33$ • 57.16£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642885099
ISBN-10: 3642885098
Pagini: 204
Ilustrații: X, 192 p. 1 illus.
Dimensiuni: 152 x 229 x 11 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1969
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642885098
Pagini: 204
Ilustrații: X, 192 p. 1 illus.
Dimensiuni: 152 x 229 x 11 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1969
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria ERGEBNISSE DER MATHEMATIK UND IHRER GRENZGEBIETE 2 FOLGE
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Measure and integration.- 1. The upper integral.- 2. The spaces ?p and Lp (1 ? p < + ?).- 3. The integral.- 4. Measurable functions.- 5. Further definitions and properties of measurable functions and sets.- 6. Carathéodory measure.- 7. The essential upper integral. The spaces M? and L?.- 8. Localizable and strictly localizable spaces.- 9. The case of abstract measures and of Radon measures.- II. Admissible subalgebras and projections onto them.- 1. Admissible subalgebras.- 2. Multiplicative linear mappings.- 3. Extensions of linear mappings.- 4. Projections onto admissible subalgebras.- 5. Increasing sequences of projections corresponding to admissible subalgebras.- III. Basic definitions and remarks concerning the notion of lifting.- 1. Linear liftings and liftings of an admissible subalgebra. Lower densities.- 2. Linear liftings, liftings and extremal points.- 3. On the measurability of the upper envelope. A limit theorem.- IV. The existence of a lifting.- 1. Several results concerning the extension of a lifting.- 2. The existence of a lifting of M?.- 3. Equivalence of strict localizability with the existence of a lifting of M?.- 4. Non-existence of a linear lifting for the ?p spaces (1 ? p < ?).- 5. The extension of a lifting to functions with values in a completely regular space.- V. Topologies associated with lower densities and liftings.- 1. The topology associated with a lower density.- 2. Construction of a lifting from a lower density using the density topology.- 3. The topologies associated with a lifting.- 4. An example.- 5. Liftings compatible with topologies.- 6. A remark concerning liftings for functions with values in a completely regular space.- VI. Integrability and measurability for abstract valued functions.- 1. The spaces ?EPand LEP (1 ? p < + ?).- 2. Measurable functions.- 3. Further definitions and properties. The spaces ?E? and LE?.- 4. The spaces MF? [G] and LF? [G].- 5. The case of the spaces ME? [E] and LE? [E].- 6. The spaces ?EP [E] and LEP [E] (1 ? p < + ?).- 7. A remark concerning the space MF? [G].- VII. Various applications.- 1. An integral representation theorem.- 2. The existence of a linear lifting of MR? is equivalent to the Dunford-Pettis theorem.- 3. Remarks concerning measurable functions and the spaces ME? [E?] and LE? [E?].- 4. The dual of LE1.- 5. The dual of LEP (1 < p < + ?).- 6. A theorem of Strassen.- 7. An application to stochastic processes.- VIII. Strong liftings.- 1. The notion of strong lifting.- 2. Further results concerning strong liftings. Examples.- 3. An example and several related results.- 4. The notion of almost strong lifting.- 5. The notions of almost strong and strong lifting for topological spaces.- Appendix. Borel liftings.- IX. Domination of measures and disintegration of measures.- 1. Convex cones of continuous functions and the domination of measures.- 2. Disintegration of measures. The case of a compact space and a continuous mapping.- 3. The cones F (T, ?+(S), µ) and F? (T, ?+(S), µ).- 4. Integration of measures.- 5. Disintegration of measures. The general case.- X. On certain endomorphisms of LR?(Z, µ).- 1. The spaces R(I1, I2).- 2. The sets U(I1, I2) and the mappings ?u.- 3. The first main theorem.- 4. The spaces U*(I1, I2).- 5. A condition equivalent with the strong lifting property.- Appendix I. Some ergodic theorems.- Appendix II. Notation and terminology.- Open Problems.- List of Symbols.