The Analysis of Stochastic Processes using GLIM: Lecture Notes in Statistics, cartea 72
Autor James K. Lindseyen Limba Engleză Paperback – 23 apr 1992
Din seria Lecture Notes in Statistics
- 15%
Preț: 607.49 lei -
Preț: 371.20 lei - 15%
Preț: 496.25 lei - 18%
Preț: 909.21 lei - 15%
Preț: 618.19 lei - 15%
Preț: 609.08 lei - 18%
Preț: 1004.42 lei -
Preț: 425.11 lei - 15%
Preț: 614.90 lei - 18%
Preț: 1183.54 lei - 15%
Preț: 608.79 lei - 15%
Preț: 615.97 lei - 15%
Preț: 616.64 lei -
Preț: 368.79 lei - 20%
Preț: 607.59 lei - 15%
Preț: 633.43 lei - 18%
Preț: 907.64 lei -
Preț: 371.97 lei -
Preț: 367.49 lei - 18%
Preț: 905.13 lei - 18%
Preț: 906.03 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei -
Preț: 378.78 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei -
Preț: 367.85 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei
Preț: 618.03 lei
Preț vechi: 727.08 lei
-15% Nou
Puncte Express: 927
Preț estimativ în valută:
109.34€ • 128.55$ • 95.77£
109.34€ • 128.55$ • 95.77£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387977614
ISBN-10: 0387977619
Pagini: 294
Ilustrații: VI, 294 p.
Dimensiuni: 170 x 242 x 16 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387977619
Pagini: 294
Ilustrații: VI, 294 p.
Dimensiuni: 170 x 242 x 16 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Normal Theory Models and Some Extensions.- 1. Linear Regression.- 2. Analysis of Variance.- 3. Analysis of Covariance.- 4. The Extension to Non-Normal Models.- 5. Fitting Distributions.- 6. Further GLIM Instructions.- 2. Markov Chains.- 1. Binary Point Processes.- 2. Multi-state Markov Chains.- 3. Stationarity.- 4. Reversibility and Equilibrium.- 5. Random Walks.- 6. The Mover-Stayer Model.- 3. Point and Renewal Processes.- 1. Point Processes.- 2. The Poisson Process.- 3. Kaplan-Meier Estimation.- 4. Probability Plots.- 5. Fitting a Distribution.- 6. A Nonhomogeneous Point Process.- 7. An Example with Periodicity.- 4. Survival Curves.- 1. Censored Data.- 2. The Hazard Function.- 3. Exponential Distribution.- 4. Pareto Distribution.- 5. Weibull Distribution.- 6. Extreme Value Distribution.- 7. Log Normal Distribution.- 8. Log Logistic Distribution.- 9. Gamma Distribution.- 10. Inverse Gaussian Distribution.- 11. Cox Proportional Hazards Model.- 12. Piecewise Exponential Distribution.- 5. Growth Curves.- 1. Exponential Growth: Continuous Data.- 2. Exponential Growth: Count Data.- 3. The Logistic Growth Curve.- 4. The Gomperz Growth Curve.- 6. Time Series: The Time Domain.- 1. Trends and Correlograms.- 2. Autoregression and Random Walks.- 3. Examination of the Distribution Assumptions.- 4. Mis-specification of the Linear Model.- 5. Serial Correlation in Regression Analysis.- 7. Time Series: The Frequency Domain.- 1. Data Preparation: Filtering and Tapering.- 2. Periodograms.- 3. Fitting an Autoregression by Spectral Analysis.- 4. Bloomfield’s Exponential Model.- 5. Comparison of Spectra.- 8. Repeated Measurements.- 1. Descriptive Methods.- 2. Autoregression.- 3. Random Effects.- 4. A Generalized Linear Autoregression “Model”.- 5. A Generalized Linear RandomEffects Model.- 6. A Multivariate Logistic Model.- 9. Stochastic Processes and Generalized Linear Models.- 1. A Logistic Growth Curve with Autoregression.- 2. Conditional Generalized Linear Autoregression.- 3. Exponential Dispersion Models.- 4. Two Sources of Dependence in Panel Data.- 5. Binary Crossover Trials.- 6. A Binary Model for Learning.- Appendix I - GLIM Commands.- Appendix II - GLIM Macros.- Appendix III - Data Tables.- References.