Teichmüller Theory in Riemannian Geometry: Lectures in Mathematics. ETH Zürich
Autor Anthony Trombaen Limba Engleză Paperback – 28 apr 1992
Din seria Lectures in Mathematics. ETH Zürich
-
Preț: 307.39 lei -
Preț: 464.14 lei -
Preț: 335.59 lei -
Preț: 364.92 lei -
Preț: 369.36 lei -
Preț: 364.35 lei - 15%
Preț: 473.80 lei -
Preț: 371.20 lei -
Preț: 367.49 lei -
Preț: 366.76 lei -
Preț: 332.08 lei -
Preț: 366.95 lei - 18%
Preț: 707.37 lei - 15%
Preț: 472.87 lei -
Preț: 399.02 lei -
Preț: 380.24 lei -
Preț: 332.41 lei -
Preț: 429.99 lei - 15%
Preț: 474.43 lei -
Preț: 366.02 lei -
Preț: 337.01 lei -
Preț: 334.04 lei -
Preț: 367.85 lei -
Preț: 369.16 lei -
Preț: 430.56 lei -
Preț: 367.49 lei - 18%
Preț: 871.89 lei
Preț: 436.67 lei
Nou
Puncte Express: 655
Preț estimativ în valută:
77.26€ • 90.83$ • 67.67£
77.26€ • 90.83$ • 67.67£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764327354
ISBN-10: 3764327359
Pagini: 228
Ilustrații: IV, 220 p.
Dimensiuni: 178 x 254 x 12 mm
Greutate: 0.4 kg
Ediția:1992
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Lectures in Mathematics. ETH Zürich
Locul publicării:Basel, Switzerland
ISBN-10: 3764327359
Pagini: 228
Ilustrații: IV, 220 p.
Dimensiuni: 178 x 254 x 12 mm
Greutate: 0.4 kg
Ediția:1992
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Lectures in Mathematics. ETH Zürich
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
0 Mathematical Preliminaries.- 1 The Manifolds of Teichmüller Theory.- 1.1 The Manifolds A and As.- 1.2 The Riemannian Manifolds M and Ms.- 1.3 The Diffeomorphism Ms /? s ? As.- 1.4 Some Differential Operators and their Adjoints.- 1.5 Proof of Poincaré’s Theorem.- 1.6 The Manifold Ms-1 and the Diffeomorphism with Ms / s.- 2 The Construction of Teichmüller Space.- 2.1 A Rapid Course in Geodesic Theory.- 2.2 The Free Action of D0 on M-1.- 2.3 The Proper Action of D0 on M-1.- 2.4 The Construction of Teichmüller Space.- 2.5 The Principal Bundles of Teichmüller Theory.- 2.6 The Weil-Petersson Metric on T(M).- 3 T(M) is a Cell.- 3.1 Dirichlet’s Energy on Teichmüller Space.- 3.2 The Properness of Dirichlet’s Energy.- 3.3 Teichmüller Space is a Cell.- 3.4 Topological Implications; The Contractibility of D0.- 4 The Complex Structure on Teichmüller Space.- 4.1 Almost Complex Principal Fibre Bundles.- 4.2 Abresch-Fischer Holomorphic Coordinates for A.- 4.3 Abresch-Fischer Holomorphic Coordinates for T(M).- 5 Properties of the Weil-Petersson Metric.- 5.1 The Weil-Petersson Metric is Kähler.- 5.2 The Natural Algebraic Connection on A.- 5.3 Further Properties of the Algebraic Connection and the non-Integrability of the Horizontal Distribution on A.- 5.4 The Curvature of Teichmüller Space with Respect to its Weil-Petersson Metric.- 5.5 An Asymptotic Property of Weil-Petersson Geodesies.- 6 The Pluri-Subharmonicity of Dirichlet’s Energy on T(M); T(M) is a Stein-Manifold.- 6.1 Pluri-Subharmonic Functions and Complex Manifolds.- 6.2 Dirichlet’s Energy is Strictly Pluri-Subharmonic.- 6.3 Wolf’s Form of Dirichlet’s Energy on T(M) is Strictly Weil-Petersson Convex.- 6.4 The Nielsen Realization Problem.- A Proof of Lichnerowicz’ Formula.- B On Harmonic Maps.- CThe Mumford Compactness Theorem.- D Proof of the Collar Lemma.- E The Levi-Form of Dirichlet’s Energy.- F Riemann-Roch and the Dimension of Teichmüller Space.- Indexes.- Index of Notation.- A Chart of the Maps Used.- Index of Key Words.