Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models
Autor Oliver Nellesen Limba Engleză Paperback – 15 dec 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 693.63 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 15 dec 2010 | 693.63 lei 6-8 săpt. | |
| Hardback (1) | 937.25 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 6 noi 2000 | 937.25 lei 6-8 săpt. |
Preț: 693.63 lei
Preț vechi: 816.04 lei
-15%
Puncte Express: 1040
Preț estimativ în valută:
122.62€ • 146.20$ • 106.36£
122.62€ • 146.20$ • 106.36£
Carte tipărită la comandă
Livrare economică 16-30 martie
Specificații
ISBN-13: 9783642086748
ISBN-10: 3642086748
Pagini: 804
Ilustrații: XVII, 786 p.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1.1 kg
Ediția:Softcover reprint of hardcover 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642086748
Pagini: 804
Ilustrații: XVII, 786 p.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1.1 kg
Ediția:Softcover reprint of hardcover 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
1. Introduction.- I. Optimization Techniques.- 2. Introduction to Optimization.- 3. Linear Optimization.- 4. Nonlinear Local Optimization.- 5. Nonlinear Global Optimization.- 6. Unsupervised Learning Techniques.- 7. Model Complexity Optimization.- II. Static Models.- 9. Introduction to Static Models.- 10. Linear, Polynomial, and Look-Up Table Models.- 11. Neural Networks.- 12. Fuzzy and Neuro-Fuzzy Models.- 13. Local Linear Neuro-Fuzzy Models: Fundamentals.- 14. Local Linear Neuro-Fuzzy Models: Advanced Aspects.- III. Dynamic Models.- 16. Linear Dynamic System Identification.- 17. Nonlinear Dynamic System Identification.- 18. Classical Polynomial Approaches.- 19. Dynamic Neural and Fuzzy Models.- 20. Dynamic Local Linear Neuro-Fuzzy Models.- 21. Neural Networks with Internal Dynamics.- IV. Applications.- 22. Applications of Static Models.- 23. Applications of Dynamic Models.- 24. Applications of Advanced Methods.- A. Vectors and Matrices.- A.1 Vector and Matrix Derivatives.- A.2 Gradient, Hessian, and Jacobian.- B. Statistics.- B.1 Deterministic and Random Variables.- B.2 Probability Density Function (pdf).- B.3 Stochastic Processes and Ergodicity.- B.4 Expectation.- B.5 Variance.- B.6 Correlation and Covariance.- B.7 Properties of Estimators.- References.
Caracteristici
Easy and intuitive understanding Explanations and terminology from an engineering point-of-view Only basic mathematics required Self-contained, no other literature needed Includes supplementary material: sn.pub/extras