Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models
Autor Oliver Nellesen Limba Engleză Hardback – 6 noi 2000
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 693.63 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 15 dec 2010 | 693.63 lei 6-8 săpt. | |
| Hardback (1) | 937.25 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 6 noi 2000 | 937.25 lei 6-8 săpt. |
Preț: 937.25 lei
Preț vechi: 1142.99 lei
-18%
Puncte Express: 1406
Preț estimativ în valută:
165.69€ • 197.55$ • 143.71£
165.69€ • 197.55$ • 143.71£
Carte tipărită la comandă
Livrare economică 16-30 martie
Specificații
ISBN-13: 9783540673699
ISBN-10: 3540673695
Pagini: 808
Ilustrații: XVII, 786 p.
Dimensiuni: 156 x 234 x 47 mm
Greutate: 1.3 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540673695
Pagini: 808
Ilustrații: XVII, 786 p.
Dimensiuni: 156 x 234 x 47 mm
Greutate: 1.3 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
1. Introduction.- I. Optimization Techniques.- 2. Introduction to Optimization.- 3. Linear Optimization.- 4. Nonlinear Local Optimization.- 5. Nonlinear Global Optimization.- 6. Unsupervised Learning Techniques.- 7. Model Complexity Optimization.- II. Static Models.- 9. Introduction to Static Models.- 10. Linear, Polynomial, and Look-Up Table Models.- 11. Neural Networks.- 12. Fuzzy and Neuro-Fuzzy Models.- 13. Local Linear Neuro-Fuzzy Models: Fundamentals.- 14. Local Linear Neuro-Fuzzy Models: Advanced Aspects.- III. Dynamic Models.- 16. Linear Dynamic System Identification.- 17. Nonlinear Dynamic System Identification.- 18. Classical Polynomial Approaches.- 19. Dynamic Neural and Fuzzy Models.- 20. Dynamic Local Linear Neuro-Fuzzy Models.- 21. Neural Networks with Internal Dynamics.- IV. Applications.- 22. Applications of Static Models.- 23. Applications of Dynamic Models.- 24. Applications of Advanced Methods.- A. Vectors and Matrices.- A.1 Vector and Matrix Derivatives.- A.2 Gradient, Hessian, and Jacobian.- B. Statistics.- B.1 Deterministic and Random Variables.- B.2 Probability Density Function (pdf).- B.3 Stochastic Processes and Ergodicity.- B.4 Expectation.- B.5 Variance.- B.6 Correlation and Covariance.- B.7 Properties of Estimators.- References.
Caracteristici
Easy and intuitive understanding Explanations and terminology from an engineering point-of-view Only basic mathematics required Self-contained, no other literature needed Includes supplementary material: sn.pub/extras