Cantitate/Preț
Produs

Multiobjective Optimization

Autor Jeffrey L. Ringuest
en Limba Engleză Hardback
Traditional mathematical programming has concentrated on problems that can be solved by achieving a single objective. In reality, many multi-objective situations exist; concentrating on a single goal limits the applicability of math programming models. Accordingly, multiobjective optimization has emerged as a rapidly growing area. In this monograph the author draws from the more mature body of literature on multicriterion decision theory to enhance understanding of multiobjective optimization. There are obvious commonalities between the two areas, but to date no one has presented a book which unifies the two. That is the aim of Multiobjective Optimization: Behavioral and Computational Considerations. There are many behavioral and computational issues which are relevant to multiobjective optimization. These issues cross the disciplines of behavioral decision theory, information and decision support systems, and computational analysis.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 36695 lei  43-57 zile
  Springer Us – 23 oct 2012 36695 lei  43-57 zile
Hardback (1) 55703 lei  43-57 zile
  55703 lei  43-57 zile

Preț: 55703 lei

Preț vechi: 65533 lei
-15% Nou

Puncte Express: 836

Preț estimativ în valută:
9858 11561$ 8644£

Carte tipărită la comandă

Livrare economică 26 ianuarie-09 februarie 26

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792392361
ISBN-10: 0792392361
Pagini: 169
Dimensiuni: 156 x 245 x 18 mm
Greutate: 0.45 kg

Cuprins

1. Introduction.- 1.1 Multiple-Objective Optimization.- 1.2 Dominance And Efficiency.- 1.3 Multiattribute Value And Utility Theory.- 1.4 Functional Forms And Independence Conditions.- 1.5 Value Functions As Compared To Utility Functions.- 1.6 Optimizing The Multiattribute Utility Or Value Function.- 1.7 References.- 1.8 Other Relevant Readings.- 2. Linear Goal Programming.- 2.1 The Goal Programming Model.- 2.2 Aspiration Levels.- 2.3 Weights.- 2.4 Preemptive Priorities.- 2.5 Multiattribute Value Theory.- 2.6 Specifying The Weights In An Additive Value Function.- 2.7 Sensitivity Analysis.- 2.8 References.- 2.9 Other Relevant Readings.- 3. Generalizing Goal Programming.- 3.1 Linear Goal Programming.- 3.2 Piecewise Linear Approximations Of Single Attribute Value Functions.- 3.3 Goal Programming With A Multiplicative Value Function.- 3.4 Nonlinear Goal Programming.- 3.5 References.- 4. Compromise Programming.- 4.1 Ideal Solutions.- 4.2 Compromise Functions.- 4.3 Compromise Solutions And The Compromise Set.- 4.4 The Anti-Ideal And Compromise Programming.- 4.5 The Method Of The Displaced Ideal.- 4.6 Compromise Programming, Linear Goal Programming, And Multiattribute Value Functions.- 4.7 References.- 5. Decision Making and the Efficient Set.- 5.1 The Efficient Set.- 5.2 Intra-Set Point Generation.- 5.3 Filtering.- 5.4 Clustering.- 5.5 Matching And Grouping.- 5.6 Sectioning.- 5.7 A Stochastic Screening Approach.- 5.8 References.- 5.9 Other Relevant Readings.- 6. Interactive Methods.- 6.1 The General Interactive Approach.- 6.2 Examples Of Interactive Methods.- 6.3 Simplified Interactive Multiple Objective Linear Programming (SIMOLP).- 6.4 Interactive Multiobjective Complex Search.- 6.5 Choosing An Interactive Method.- 6.6 References.- 7. Computational Efficiency and Problems with Special Structure.- 7.1 Network Flow Problems.- 7.2 Multiple Objective Network Flow ProbLems.- 7.3 A Network Specialization Of A Multiobjective Simplex Algorithm.- 7.4 Compromise Solutions For The Multiobjective Network Flow Problem.- 7.5 Interactive Methods For The Multiobjective Network Flow Problem.- 7.6 References.- 8. Computational Efficiency and Linear Problems of General Structure.- 8.1 Computational Efficiency And The Ideal Solution.- 8.2 Test Problems.- 8.3 Computer Codes.- 8.4 Results.- 8.5 Other Computational Studies.- 8.6 References.- 9. Using Multiobjective Linear Programming to Reconcile Preferences Over Time.- 9.1 Preferences Over Time.- 9.2 The Behavioral Properties Of NPV.- 9.3 A More General NPV Model.- 9.4 Using Multiobjective Linear Programming As An Alternative To NPV.- 9.5 The Advantages Of Using Multiobjective Linear Programming For Reconciling Preferences Over Time.- 9.6 References.- 10. Data Presentation and Multiobjective Optimization.- 10.1 Data Representation And The Axioms Of Utility Theory.- 10.2 The Framing Of Decisions.- 10.3 Reconciling The Decision Frame.- 10.4 Perception Of The Ideal.- 10.5 References.