Modern Geometry — Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields: Graduate Texts in Mathematics, cartea 93
Traducere de R. G. Burns Autor B.A. Dubrovin, A. T. Fomenko, S.P. Novikoven Limba Engleză Paperback – 28 oct 2011
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.31 lei - 17%
Preț: 396.01 lei -
Preț: 486.35 lei -
Preț: 260.98 lei -
Preț: 433.17 lei -
Preț: 417.32 lei -
Preț: 391.33 lei - 15%
Preț: 466.31 lei - 15%
Preț: 485.89 lei -
Preț: 424.30 lei -
Preț: 374.76 lei -
Preț: 439.55 lei - 15%
Preț: 585.17 lei - 15%
Preț: 573.07 lei -
Preț: 484.64 lei -
Preț: 437.67 lei -
Preț: 313.64 lei - 17%
Preț: 395.83 lei - 15%
Preț: 464.09 lei -
Preț: 481.70 lei -
Preț: 370.26 lei - 15%
Preț: 578.90 lei - 15%
Preț: 389.42 lei - 15%
Preț: 534.41 lei -
Preț: 433.12 lei -
Preț: 479.83 lei - 15%
Preț: 525.56 lei - 15%
Preț: 383.47 lei -
Preț: 363.82 lei - 15%
Preț: 394.36 lei - 15%
Preț: 392.05 lei - 15%
Preț: 393.01 lei - 15%
Preț: 394.35 lei - 15%
Preț: 393.06 lei - 15%
Preț: 628.10 lei - 15%
Preț: 393.56 lei - 15%
Preț: 430.05 lei - 15%
Preț: 535.56 lei - 17%
Preț: 396.67 lei -
Preț: 384.23 lei - 18%
Preț: 726.32 lei - 19%
Preț: 434.45 lei -
Preț: 386.50 lei - 17%
Preț: 428.38 lei -
Preț: 476.63 lei - 15%
Preț: 441.19 lei -
Preț: 500.39 lei - 15%
Preț: 571.96 lei
Preț: 461.86 lei
Preț vechi: 543.37 lei
-15% Nou
Puncte Express: 693
Preț estimativ în valută:
81.73€ • 95.84$ • 71.77£
81.73€ • 95.84$ • 71.77£
Carte tipărită la comandă
Livrare economică 16 februarie-02 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461287568
ISBN-10: 1461287561
Pagini: 492
Ilustrații: XVI, 470 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461287561
Pagini: 492
Ilustrații: XVI, 470 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Geometry in Regions of a Space. Basic Concepts.- §1. Co-ordinate systems.- §2. Euclidean space.- §3. Riemannian and pseudo-Riemannian spaces.- §4. The simplest groups of transformations of Euclidean space.- §5. The Serret—Frenet formulae.- §6. Pseudo-Euclidean spaces.- 2 The Theory of Surfaces.- §7. Geometry on a surface in space.- §8. The second fundamental form.- §9. The metric on the sphere.- §10. Space-like surfaces in pseudo-Euclidean space.- §11. The language of complex numbers in geometry.- §12. Analytic functions.- §13. The conformal form of the metric on a surface.- §14. Transformation groups as surfaces in N-dimensional space.- §15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions.- 3 Tensors: The Algebraic Theory.- §16. Examples of tensors.- §17. The general definition of a tensor.- §18. Tensors of type (0, k).- §19. Tensors in Riemannian and pseudo-Riemannian spaces.- §20. The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space. Examples of invariant tensors.- §21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues.- §22. The behaviour of tensors under mappings.- §23. Vector fields.- §24. Lie algebras.- 4 The Differential Calculus of Tensors.- §25. The differential calculus of skew-symmetric tensors.- §26. Skew-symmetric tensors and the theory of integration.- §27. Differential forms on complex spaces.- §28. Covariant differentiation.- §29. Covariant differentiation and the metric.- §30. The curvature tensor.- 5 The Elements of the Calculus of Variations.- §31. One-dimensional variational problems.- §32. Conservation laws.- §33. Hamiltonian formalism.- §34. The geometrical theory of phase space.- §35. Lagrange surfaces.- §36.The second variation for the equation of the geodesics.- 6 The Calculus of Variations in Several Dimensions. Fields and Their Geometric Invariants.- §37. The simplest higher-dimensional variational problems.- §38. Examples of Lagrangians.- §39. The simplest concepts of the general theory of relativity.- §40. The spinor representations of the groups SO(3) and O(3, 1). Dirac’s equation and its properties.- §41. Covariant differentiation of fields with arbitrary symmetry.- §42. Examples of gauge-invariant functionals. Maxwell’s equations and the Yang—Mills equation. Functionals with identically zero variational derivative (characteristic classes).