Modern Geometry — Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields: Graduate Texts in Mathematics, cartea 93
Traducere de R. G. Burns Autor B.A. Dubrovin, A. T. Fomenko, S.P. Novikoven Limba Engleză Paperback – 28 oct 2011
Din seria Graduate Texts in Mathematics
- 13%
Preț: 388.00 lei - 15%
Preț: 466.31 lei -
Preț: 380.44 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.35 lei - 15%
Preț: 391.74 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei - 15%
Preț: 393.25 lei - 17%
Preț: 396.00 lei -
Preț: 445.45 lei - 15%
Preț: 388.38 lei - 15%
Preț: 576.36 lei -
Preț: 542.93 lei -
Preț: 449.96 lei -
Preț: 450.27 lei -
Preț: 432.82 lei -
Preț: 260.78 lei -
Preț: 391.02 lei - 15%
Preț: 571.96 lei - 15%
Preț: 569.57 lei - 15%
Preț: 559.25 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 477.42 lei -
Preț: 418.37 lei -
Preț: 374.48 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei -
Preț: 373.03 lei - 15%
Preț: 487.42 lei - 15%
Preț: 567.43 lei -
Preț: 444.79 lei - 40%
Preț: 344.12 lei
Preț: 461.86 lei
Preț vechi: 543.37 lei
-15%
Puncte Express: 693
Preț estimativ în valută:
81.68€ • 95.85$ • 70.84£
81.68€ • 95.85$ • 70.84£
Carte tipărită la comandă
Livrare economică 10-24 martie
Specificații
ISBN-13: 9781461287568
ISBN-10: 1461287561
Pagini: 492
Ilustrații: XVI, 470 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461287561
Pagini: 492
Ilustrații: XVI, 470 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.68 kg
Ediția:2nd ed. 1992
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Geometry in Regions of a Space. Basic Concepts.- §1. Co-ordinate systems.- §2. Euclidean space.- §3. Riemannian and pseudo-Riemannian spaces.- §4. The simplest groups of transformations of Euclidean space.- §5. The Serret—Frenet formulae.- §6. Pseudo-Euclidean spaces.- 2 The Theory of Surfaces.- §7. Geometry on a surface in space.- §8. The second fundamental form.- §9. The metric on the sphere.- §10. Space-like surfaces in pseudo-Euclidean space.- §11. The language of complex numbers in geometry.- §12. Analytic functions.- §13. The conformal form of the metric on a surface.- §14. Transformation groups as surfaces in N-dimensional space.- §15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions.- 3 Tensors: The Algebraic Theory.- §16. Examples of tensors.- §17. The general definition of a tensor.- §18. Tensors of type (0, k).- §19. Tensors in Riemannian and pseudo-Riemannian spaces.- §20. The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space. Examples of invariant tensors.- §21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues.- §22. The behaviour of tensors under mappings.- §23. Vector fields.- §24. Lie algebras.- 4 The Differential Calculus of Tensors.- §25. The differential calculus of skew-symmetric tensors.- §26. Skew-symmetric tensors and the theory of integration.- §27. Differential forms on complex spaces.- §28. Covariant differentiation.- §29. Covariant differentiation and the metric.- §30. The curvature tensor.- 5 The Elements of the Calculus of Variations.- §31. One-dimensional variational problems.- §32. Conservation laws.- §33. Hamiltonian formalism.- §34. The geometrical theory of phase space.- §35. Lagrange surfaces.- §36.The second variation for the equation of the geodesics.- 6 The Calculus of Variations in Several Dimensions. Fields and Their Geometric Invariants.- §37. The simplest higher-dimensional variational problems.- §38. Examples of Lagrangians.- §39. The simplest concepts of the general theory of relativity.- §40. The spinor representations of the groups SO(3) and O(3, 1). Dirac’s equation and its properties.- §41. Covariant differentiation of fields with arbitrary symmetry.- §42. Examples of gauge-invariant functionals. Maxwell’s equations and the Yang—Mills equation. Functionals with identically zero variational derivative (characteristic classes).