Machine Learning: ECML-93: European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993. Proceedings: Lecture Notes in Computer Science, cartea 667
Editat de Pavel B. Brazdilen Limba Engleză Paperback – 23 mar 1993
Din seria Lecture Notes in Computer Science
- 15%
Preț: 558.12 lei - 20%
Preț: 573.45 lei - 20%
Preț: 330.54 lei - 20%
Preț: 620.33 lei - 20%
Preț: 400.77 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 629.71 lei - 20%
Preț: 328.94 lei - 20%
Preț: 375.72 lei - 20%
Preț: 568.70 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 489.11 lei - 20%
Preț: 560.93 lei - 20%
Preț: 731.97 lei - 20%
Preț: 563.29 lei - 20%
Preț: 403.00 lei - 20%
Preț: 782.57 lei - 20%
Preț: 336.86 lei - 20%
Preț: 560.93 lei - 20%
Preț: 850.42 lei - 20%
Preț: 432.78 lei - 20%
Preț: 342.61 lei - 20%
Preț: 631.96 lei - 20%
Preț: 904.16 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 487.46 lei - 20%
Preț: 400.17 lei - 20%
Preț: 984.64 lei - 20%
Preț: 556.96 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 793.92 lei - 20%
Preț: 733.68 lei - 20%
Preț: 1137.10 lei - 20%
Preț: 679.09 lei - 20%
Preț: 558.53 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 560.93 lei - 20%
Preț: 324.19 lei - 20%
Preț: 1079.23 lei - 20%
Preț: 735.28 lei - 20%
Preț: 373.80 lei -
Preț: 395.25 lei - 20%
Preț: 488.90 lei - 20%
Preț: 293.24 lei
Preț: 329.25 lei
Preț vechi: 411.55 lei
-20%
Puncte Express: 494
Preț estimativ în valută:
58.21€ • 69.81$ • 50.60£
58.21€ • 69.81$ • 50.60£
Carte tipărită la comandă
Livrare economică 13-27 martie
Specificații
ISBN-13: 9783540566021
ISBN-10: 3540566023
Pagini: 492
Ilustrații: XII, 480 p.
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.69 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540566023
Pagini: 492
Ilustrații: XII, 480 p.
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.69 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
FOIL: A midterm report.- Inductive logic programming: Derivations, successes and shortcomings.- Two methods for improving inductive logic programming systems.- Generalization under implication by using or-introduction.- On the proper definition of minimality in specialization and theory revision.- Predicate invention in inductive data engineering.- Subsumption and refinement in model inference.- Some lower bounds for the computational complexity of inductive logic programming.- Improving example-guided unfolding.- Bayes and pseudo-Bayes estimates of conditional probabilities and their reliability.- Induction of recursive Bayesian classifiers.- Decision tree pruning as a search in the state space.- Controlled redundancy in incremental rule learning.- Getting order independence in incremental learning.- Feature selection using rough sets theory.- Effective learning in dynamic environments by explicit context tracking.- COBBIT—A control procedure for COBWEB in the presence of concept drift.- Genetic algorithms for protein tertiary structure prediction.- SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts.- SAMIA: A bottom-up learning method using a simulated annealing algorithm.- Predicate invention in ILP — an overview.- Functional inductive logic programming with queries to the user.- A note on refinement operators.- An iterative and bottom-up procedure for proving-by-example.- Learnability of constrained logic programs.- Complexity dimensions and learnability.- Can complexity theory benefit from Learning Theory?.- Learning domain theories using abstract background knowledge.- Discovering patterns in EEG-signals: Comparative study of a few methods.- Learning to control dynamic systems with automatic quantization.- Refinement of rule sets with JoJo.- Rule combination in inductive learning.- Using heuristics to speed up induction on continuous-valued attributes.- Integrating models of knowledge and Machine Learning.- Exploiting context when learning to classify.- IDDD: An inductive, domain dependent decision algorithm.- An application of machine learning in the domain of loan analysis.- Extraction of knowledge from data using constrained neural networks.- Integrated learning architectures.- An overview of evolutionary computation.- ML techniques and text analysis.