Data Mining and Bioinformatics
Editat de Mehmet M Dalkilic, Sun Kim, Jiong Yangen Limba Engleză Paperback – 21 dec 2006
Preț: 316.49 lei
Preț vechi: 395.62 lei
-20%
Puncte Express: 475
Preț estimativ în valută:
56.01€ • 65.46$ • 48.63£
56.01€ • 65.46$ • 48.63£
Carte tipărită la comandă
Livrare economică 20 februarie-06 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540689706
ISBN-10: 3540689702
Pagini: 208
Ilustrații: VIII, 198 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540689702
Pagini: 208
Ilustrații: VIII, 198 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Bioinformatics at Microsoft Research.- A Novel Approach for Effective Learning of Cluster Structures with Biological Data Applications.- Subspace Clustering of Microarray Data Based on Domain Transformation.- Bayesian Hierarchical Models for Serial Analysis of Gene Expression.- Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray Data.- A Biological Text Retrieval System Based on Background Knowledge and User Feedback.- Automatic Annotation of Protein Functional Class from Sparse and Imbalanced Data Sets.- Bioinformatics Data Source Integration Based on Semantic Relationships Across Species.- An Efficient Storage Model for the SBML Documents Using Object Databases.- Identification of Phenotype-Defining Gene Signatures Using the Gene-Pair Matrix Based Clustering.- TP+Close: Mining Frequent Closed Patterns in Gene Expression Datasets.- Exploring Essential Attributes for Detecting MicroRNA Precursors from Background Sequences.- A Gene Structure Prediction Program Using Duration HMM.- An Approximate de Bruijn Graph Approach to Multiple Local Alignment and Motif Discovery in Protein Sequences.- Discovering Consensus Patterns in Biological Databases.- Comparison of Modularization Methods in Application to Different Biological Networks.