Learning Representation for Multi-View Data Analysis: Models and Applications: Advanced Information and Knowledge Processing
Autor Zhengming Ding, Handong Zhao, Yun Fuen Limba Engleză Hardback – 17 dec 2018
A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Din seria Advanced Information and Knowledge Processing
- 20%
Preț: 51.34 lei - 20%
Preț: 290.33 lei - 20%
Preț: 1001.76 lei - 20%
Preț: 947.87 lei - 20%
Preț: 955.78 lei - 20%
Preț: 624.51 lei - 15%
Preț: 616.45 lei -
Preț: 373.40 lei - 20%
Preț: 621.32 lei - 20%
Preț: 639.87 lei - 20%
Preț: 321.81 lei - 18%
Preț: 1071.48 lei - 20%
Preț: 622.27 lei - 20%
Preț: 957.06 lei - 20%
Preț: 620.69 lei - 20%
Preț: 317.05 lei - 20%
Preț: 629.08 lei - 20%
Preț: 633.38 lei - 20%
Preț: 944.83 lei - 20%
Preț: 1141.71 lei - 20%
Preț: 952.76 lei - 20%
Preț: 951.34 lei - 18%
Preț: 910.89 lei - 20%
Preț: 638.45 lei - 18%
Preț: 698.75 lei - 20%
Preț: 959.58 lei - 20%
Preț: 617.84 lei - 18%
Preț: 918.00 lei - 20%
Preț: 949.62 lei - 20%
Preț: 952.31 lei - 20%
Preț: 958.63 lei - 20%
Preț: 625.45 lei - 20%
Preț: 946.75 lei - 20%
Preț: 949.27 lei - 20%
Preț: 618.33 lei - 20%
Preț: 619.09 lei - 20%
Preț: 626.50 lei - 20%
Preț: 952.94 lei - 20%
Preț: 616.72 lei - 20%
Preț: 620.38 lei - 20%
Preț: 622.59 lei - 20%
Preț: 329.12 lei - 20%
Preț: 954.37 lei - 20%
Preț: 620.20 lei - 20%
Preț: 785.88 lei - 18%
Preț: 909.98 lei - 20%
Preț: 618.33 lei - 20%
Preț: 622.59 lei - 20%
Preț: 885.40 lei
Preț: 789.82 lei
Preț vechi: 987.28 lei
-20% Nou
Puncte Express: 1185
Preț estimativ în valută:
139.78€ • 163.93$ • 122.56£
139.78€ • 163.93$ • 122.56£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030007331
ISBN-10: 3030007332
Pagini: 390
Ilustrații: X, 268 p. 76 illus., 69 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.57 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Advanced Information and Knowledge Processing
Locul publicării:Cham, Switzerland
ISBN-10: 3030007332
Pagini: 390
Ilustrații: X, 268 p. 76 illus., 69 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.57 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Advanced Information and Knowledge Processing
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Multi-view Clustering with Complete Information.- Multi-view Clustering with Partial Information.- Multi-view Outlier Detection.- Multi-view Transformation Learning.- Zero-Shot Learning.- Missing Modality Transfer Learning.- Deep Domain Adaptation.- Deep Domain Generalization.
Recenzii
“The book should be well received by advanced postgraduate students and data (especially big data) analysts. A background in statistics, mathematics, and computing is a prerequisite for reading. It is surely a must-have reference book for any scientific library.” (Soubhik Chakraborty, Computing Reviews, May 07, 2019)
Textul de pe ultima copertă
This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers’ understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal.
A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Caracteristici
Broadens your understanding of multi-view data analysis Explains how to design an effective multi-view data representation model Reinforces multi-view representation principles with real-world practices