Hebbian Learning and Negative Feedback Networks: Advanced Information and Knowledge Processing
Autor Colin Fyfeen Limba Engleză Paperback – 22 oct 2010
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 962.35 lei 39-44 zile | |
| SPRINGER LONDON – 22 oct 2010 | 962.35 lei 39-44 zile | |
| Hardback (1) | 960.97 lei 6-8 săpt. | |
| Springer – 5 ian 2005 | 960.97 lei 6-8 săpt. |
Din seria Advanced Information and Knowledge Processing
- 20%
Preț: 51.34 lei - 20%
Preț: 290.33 lei - 20%
Preț: 1001.76 lei - 20%
Preț: 946.75 lei - 20%
Preț: 949.62 lei - 20%
Preț: 625.45 lei - 15%
Preț: 616.45 lei -
Preț: 373.40 lei - 20%
Preț: 620.38 lei - 20%
Preț: 639.87 lei - 20%
Preț: 321.81 lei - 20%
Preț: 617.84 lei - 18%
Preț: 918.00 lei - 20%
Preț: 958.63 lei - 20%
Preț: 620.69 lei - 20%
Preț: 618.33 lei - 20%
Preț: 619.09 lei - 20%
Preț: 633.38 lei - 20%
Preț: 944.83 lei - 20%
Preț: 1141.71 lei - 20%
Preț: 954.37 lei - 20%
Preț: 951.34 lei - 20%
Preț: 952.76 lei - 20%
Preț: 638.45 lei - 18%
Preț: 910.89 lei - 18%
Preț: 698.75 lei - 20%
Preț: 614.03 lei - 18%
Preț: 1071.48 lei - 20%
Preț: 952.31 lei - 20%
Preț: 955.78 lei - 20%
Preț: 622.27 lei - 20%
Preț: 957.06 lei - 20%
Preț: 949.27 lei - 20%
Preț: 947.87 lei - 20%
Preț: 624.51 lei - 20%
Preț: 317.05 lei - 20%
Preț: 952.94 lei - 20%
Preț: 616.72 lei - 20%
Preț: 629.08 lei - 20%
Preț: 622.59 lei - 20%
Preț: 329.12 lei - 20%
Preț: 621.32 lei -
Preț: 437.56 lei - 20%
Preț: 959.58 lei - 20%
Preț: 785.88 lei - 20%
Preț: 618.33 lei - 20%
Preț: 622.59 lei - 20%
Preț: 885.40 lei
Preț: 962.35 lei
Preț vechi: 1202.93 lei
-20% Nou
Puncte Express: 1444
Preț estimativ în valută:
170.30€ • 198.59$ • 149.52£
170.30€ • 198.59$ • 149.52£
Carte tipărită la comandă
Livrare economică 12-17 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781849969451
ISBN-10: 1849969450
Pagini: 404
Ilustrații: XVIII, 383 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of hardcover 1st ed. 2005
Editura: SPRINGER LONDON
Colecția Springer
Seria Advanced Information and Knowledge Processing
Locul publicării:London, United Kingdom
ISBN-10: 1849969450
Pagini: 404
Ilustrații: XVIII, 383 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.6 kg
Ediția:Softcover reprint of hardcover 1st ed. 2005
Editura: SPRINGER LONDON
Colecția Springer
Seria Advanced Information and Knowledge Processing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
Single Stream Networks.- Background.- The Negative Feedback Network.- Peer-Inhibitory Neurons.- Multiple Cause Data.- Exploratory Data Analysis.- Topology Preserving Maps.- Maximum Likelihood Hebbian Learning.- Dual Stream Networks.- Two Neural Networks for Canonical Correlation Analysis.- Alternative Derivations of CCA Networks.- Kernel and Nonlinear Correlations.- Exploratory Correlation Analysis.- Multicollinearity and Partial Least Squares.- Twinned Principal Curves.- The Future.
Recenzii
From the reviews of the first edition:
"This book is concerned with developing unsupervised learning procedures and building self organizing network modules that can capture regularities of the environment. … the book provides a detailed introduction to Hebbian learning and negative feedback neural networks and is suitable for self-study or instruction in an introductory course." (Nicolae S. Mera, Zentralblatt MATH, Vol. 1069, 2005)
"This book is concerned with developing unsupervised learning procedures and building self organizing network modules that can capture regularities of the environment. … the book provides a detailed introduction to Hebbian learning and negative feedback neural networks and is suitable for self-study or instruction in an introductory course." (Nicolae S. Mera, Zentralblatt MATH, Vol. 1069, 2005)
Caracteristici
Concentrates on one specific architecture and learning rule which no other book does State of the art in artificial neural networks which use Hebbian learning A comparative study of a variety of techniques that have been drawn from extensions of one network The close link between statistics and artificial neural networks is made clear No other direct competition