Hyperbolic Functional Differential Inequalities and Applications: Mathematics and Its Applications, cartea 486
Autor Z. Kamonten Limba Engleză Paperback – 11 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 616.95 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 11 oct 2012 | 616.95 lei 6-8 săpt. | |
| Hardback (1) | 623.05 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 iun 1999 | 623.05 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei - 15%
Preț: 568.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 564.25 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei - 15%
Preț: 581.54 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei - 15%
Preț: 679.01 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 15%
Preț: 564.42 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 578.70 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei
Preț: 616.95 lei
Preț vechi: 725.82 lei
-15% Nou
Puncte Express: 925
Preț estimativ în valută:
109.15€ • 127.36$ • 95.43£
109.15€ • 127.36$ • 95.43£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401059572
ISBN-10: 9401059578
Pagini: 324
Ilustrații: XIII, 306 p.
Dimensiuni: 160 x 240 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401059578
Pagini: 324
Ilustrații: XIII, 306 p.
Dimensiuni: 160 x 240 x 17 mm
Greutate: 0.45 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Initial Problems on the Haar Pyramid.- 1.1 Introduction.- 1.2 Functional differential inequalities.- 1.3 Weak functional differential inequalities.- 1.4 Comparison theorems for classical solutions.- 1.5 Applications of comparison theorems.- 1.6 Kamke functions.- 1.7 Uniqueness of classical solutions.- 1.8 Nonlinear systems.- 1.9 Haar inequality for nonlinear systems.- 1.10 Uniqueness and continuous dependence.- 1.11 Chaplygin method for initial problems.- 2 Existence of Solutions on the Haar Pyramid.- 2.1 Introduction.- 2.2 Function spaces.- 2.3 Existence of classical solutions.- 2.4 Examples.- 2.5 Quasi — linear systems.- 2.6 Bicharacteristics of quasilinear systems.- 2.7 Integral operators for initial problems.- 2.8 Existence of Carathéodory solutions.- 2.9 Uniqueness of generalized solutions.- 3 Numerical Methods for Initial Problems.- 3.1 Introduction.- 3.2 Functional difference inequalities.- 3.3 Applications of functional difference inequalities.- 3.4 Almost linear problems.- 3.5 Error estimates of approximate solutions.- 3.6 Difference methods for nonlinear equations.- 3.7 Interpolating operators on Haar pyramid.- 3.8 The Euler method for the Cauchy problem.- 3.9 Error estimates for the Euler method.- 3.10 Difference methods for almost linear equations.- 4 Initial Problems on Unbounded Domains.- 4.1 Introduction.- 4.2 Bicharacteristics for quasilinear systems.- 4.3 Operator U? and its properties.- 4.4 Existence of weak solutions.- 4.5 Integral operators for quasilinear systems.- 4.6 Quasilinear systems in the second canonical form.- 4.7 Uniqueness of solutions.- 4.8 Function spaces.- 4.9 Bicharacteristics of nonlinear functional differential equations.- 4.10 Integral functional equations.- 4.11 The existence of the sequence of successive approximations.-4.12 Convergence of the sequence {z(m), u(m)}.- 4.13 The main theorem.- 4.14 Some noteworthy particular cases.- 5 Mixed Problems for Nonlinear Equations.- 5.1 Introduction.- 5.2 Functional differential inequalities.- 5.3 Comparison theorems for mixed problems.- 5.4 Chaplygin method for mixed problems.- 5.5 Approximate solutions.- 5.6 Difference methods for mixed problems.- 5.7 Functional difference equations with mixed conditions.- 5.8 Convergence of difference methods.- 5.9 Interpolating operators.- 5.10 The Euler method for mixed problems.- 5.11 Bicharacteristics for mixed problems.- 5.12 Functional integral equations.- 5.13 Bicharacteristics of nonlinear mixed problems.- 5.14 Integral functional equations.- 5.15 The existence of solutions of nonlinear mixed problems.- 5.16 Uniqueness of weak solutions of mixed problems.- 6 Numerical Method of Lines.- 6.1 Introduction.- 6.2 Comparison theorem.- 6.3 Existence theorem and stability.- 6.4 Convergence of the method of lines.- 6.5 Examples of the numerical methods of lines.- 6.6 Differential difference inequalities for mixed problems.- 6.7 Method of lines for mixed problem.- 6.8 Modified method of lines.- 7 Generalized Solutions.- 7.1 Introduction.- 7.2 Quasi — equicontinuous operators for semilinear systems.- 7.3 Existence of solutions.- 7.4 Functional differential inequalities.- 7.5 Extremal solutions of semilinear systems.- 7.6 Carathéodory solutions of functional differential inequalities.- 7.7 Existence of Carathéodory solutions.- 7.8 Functional differential problems with unbounded delay.- 7.9 Viscosity solutions of functional differential inequalities.- 8 Functional Integral Equations.- 8.1 Introduction.- 8.2 Properties of a comparison problem.- 8.3 The existence and uniqueness of solutions.- 8.4 Examples ofcomparison problems.- 8.5 A certain functional equation.- 8.6 Properties of the operator U.- 8.7 Nonlinear functional integral equations.- 8.8 Discretization of the Darboux problem.- 8.9 Solvability of difference problems.- 8.10 Nonlinear estimates.- 8.11 Implicit difference methods.