Algebraic Systems of Equations and Computational Complexity Theory: Mathematics and Its Applications, cartea 269
Autor Z. Wang, S. Xu, T. Gaoen Limba Engleză Paperback – 14 oct 2012
Din seria Mathematics and Its Applications
- 20%
Preț: 960.38 lei - 15%
Preț: 632.63 lei - 18%
Preț: 926.23 lei - 18%
Preț: 908.91 lei - 15%
Preț: 623.39 lei - 15%
Preț: 626.82 lei -
Preț: 379.31 lei - 18%
Preț: 965.60 lei - 15%
Preț: 633.26 lei - 15%
Preț: 623.52 lei -
Preț: 379.89 lei - 15%
Preț: 626.68 lei -
Preț: 405.52 lei -
Preț: 379.51 lei - 15%
Preț: 679.01 lei -
Preț: 376.17 lei -
Preț: 374.91 lei - 20%
Preț: 566.92 lei - 15%
Preț: 628.73 lei - 20%
Preț: 624.91 lei -
Preț: 380.46 lei - 15%
Preț: 626.68 lei - 15%
Preț: 624.01 lei -
Preț: 377.32 lei - 15%
Preț: 624.01 lei - 15%
Preț: 618.64 lei -
Preț: 383.03 lei -
Preț: 371.00 lei - 15%
Preț: 614.24 lei - 15%
Preț: 629.85 lei
Preț: 371.37 lei
Nou
Puncte Express: 557
Preț estimativ în valută:
65.72€ • 77.06$ • 57.71£
65.72€ • 77.06$ • 57.71£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401043427
ISBN-10: 9401043426
Pagini: 260
Ilustrații: VI, 244 p.
Dimensiuni: 160 x 240 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401043426
Pagini: 260
Ilustrații: VI, 244 p.
Dimensiuni: 160 x 240 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
Chpater 1 Kuhn’s algorithm for algebraic equations.- §1. Triangulation and labelling.- §2. Complementary pivoting algorithm.- §3. Convergence, I.- §4. Convergence, II.- 2 Efficiency of Kuhn’s algorithm.- §1. Error estimate.- §2. Cost estimate.- §3. Monotonicity problem.- §4. Results on monotonicity.- 3 Newton method and approximate zeros.- §1. Approximate zeros.- §2. Coefficients of polynomials.- §3. One step of Newton iteration.- §4. Conditions for approximate zeros.- 4 A complexity comparison of Kuhn’s algorithm and Newton method.- §1. Smale’s work on the complexity of Newton method.- §2. Set of bad polynomials and its volume estimate.- §3. Locate approximate zeros by Kuhn’s algorithm.- §4. Some remarks.- 5 Incremental algorithms and cost theory.- §1. Incremental algorithms Ih,f.- §2. Euler’s algorithm is of efficiency k.- §3. Generalized approximate zeros.- §4. Ek iteration.- §5. Cost theory of Ek as an Euler’s algorithm.- §6. Incremental algorithms of efficiency k.- 6 Homotopy algorithms.- §1. Homotopies and Index Theorem.- §2. Degree and its invariance.- §3. Jacobian of polynomial mappings.- §4. Conditions for boundedness of solutions.- 7 Probabilistic discussion on zeros of polynomial mappings.- §1. Number of zeros of polynomial mappings.- §2. Isolated zeros.- §3. Locating zeros of analytic functions in bounded regions.- 8 Piecewise linear algorithms.- §1. Zeros of PL mapping and their indexes.- §2. PL approximations.- §3. PL homotopy algorithms work with probability one.- References.- Acknowledgments.