High-dimensional Knot Theory: Algebraic Surgery in Codimension 2: Springer Monographs in Mathematics
Apendix de E. Winkelnkemper Autor Andrew Ranickien Limba Engleză Hardback – 6 aug 1998
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 633.89 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 15 dec 2010 | 633.89 lei 6-8 săpt. | |
| Hardback (1) | 635.80 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 6 aug 1998 | 635.80 lei 6-8 săpt. |
Din seria Springer Monographs in Mathematics
- 18%
Preț: 930.44 lei - 18%
Preț: 712.85 lei - 18%
Preț: 861.00 lei - 18%
Preț: 882.89 lei - 15%
Preț: 458.96 lei - 18%
Preț: 1186.72 lei - 18%
Preț: 877.99 lei - 20%
Preț: 625.10 lei - 18%
Preț: 815.18 lei - 18%
Preț: 817.95 lei - 15%
Preț: 625.75 lei -
Preț: 381.34 lei - 18%
Preț: 762.43 lei - 15%
Preț: 480.57 lei - 18%
Preț: 1188.09 lei -
Preț: 408.65 lei - 18%
Preț: 1349.58 lei - 18%
Preț: 766.37 lei - 18%
Preț: 880.70 lei -
Preț: 381.92 lei - 15%
Preț: 631.87 lei - 15%
Preț: 449.85 lei - 15%
Preț: 623.05 lei -
Preț: 390.81 lei -
Preț: 375.07 lei - 15%
Preț: 618.50 lei - 15%
Preț: 624.46 lei - 15%
Preț: 558.76 lei - 15%
Preț: 618.64 lei - 15%
Preț: 622.73 lei - 18%
Preț: 867.53 lei - 15%
Preț: 628.10 lei - 18%
Preț: 866.89 lei - 18%
Preț: 872.06 lei - 18%
Preț: 858.85 lei - 15%
Preț: 634.07 lei - 18%
Preț: 771.22 lei - 15%
Preț: 621.67 lei -
Preț: 369.90 lei - 15%
Preț: 677.14 lei - 18%
Preț: 1199.62 lei - 18%
Preț: 991.12 lei -
Preț: 393.57 lei - 15%
Preț: 615.66 lei - 18%
Preț: 768.64 lei -
Preț: 373.98 lei - 18%
Preț: 927.86 lei - 15%
Preț: 623.84 lei - 15%
Preț: 626.20 lei
Preț: 635.80 lei
Preț vechi: 748.00 lei
-15% Nou
Puncte Express: 954
Preț estimativ în valută:
112.51€ • 131.93$ • 98.81£
112.51€ • 131.93$ • 98.81£
Carte tipărită la comandă
Livrare economică 04-18 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540633891
ISBN-10: 3540633898
Pagini: 692
Ilustrații: XXXVI, 646 p.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1 kg
Ediția:1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540633898
Pagini: 692
Ilustrații: XXXVI, 646 p.
Dimensiuni: 155 x 235 x 42 mm
Greutate: 1 kg
Ediția:1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Algebraic K-theory.- Finite structures.- Geometric bands.- Algebraic bands.- Localization and completion in K-theory.- K-theory of polynomial extensions.- K-theory of formal power series.- Algebraic transversality.- Finite domination and Novikov homology.- Noncommutative localization.- Endomorphism K-theory.- The characteristic polynomial.- Primary K-theory.- Automorphism K-theory.- Witt vectors.- The fibering obstruction.- Reidemeister torsion.- Alexander polynomials.- K-theory of Dedekind rings.- K-theory of function fields.- Algebraic L-theory.- Algebraic Poincaré complexes.- Codimension q surgery.- Codimension 2 surgery.- Manifold and geometric Poincaré bordism of X × S 1.- L-theory of Laurent extensions.- Localization and completion in L-theory.- Asymmetric L-theory.- Framed codimension 2 surgery.- Automorphism L-theory.- Open books.- Twisted doubles.- Isometric L-theory.- Seifert and Blanchfield complexes.- Knot theory.- Endomorphism L-theory.- Primary L-theory.- Almost symmetric L-theory.- L-theory of fields and rational localization.- L-theory of Dedekind rings.- L-theory of function fields.- The multisignature.- Coupling invariants.- The knot cobordism groups.
Textul de pe ultima copertă
High-dimensional knot theory is the study of the embeddings of n-dimensional manifolds in (n+2)-dimensional manifolds, generalizing the traditional study of knots in the case n=1. This is the first book entirely devoted to high-dimensional knots. The main theme is the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory. Many results in the research literature are thus brought into a single framework, and new results are obtained. The treatment is particularly effective in dealing with open books, which are manifolds with codimension 2 submanifolds such that the complement fibres over a circle. The book concludes with an appendix by E. Winkelnkemper on the history of open books.