Grammatical Inference: Algorithms and Applications: 5th International Colloquium, ICGI 2000, Lisbon, Portugal, September 11-13, 2000 Proceedings: Lecture Notes in Computer Science, cartea 1891
Editat de Arlindo L. Oliveiraen Limba Engleză Paperback – sep 2000
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 331.80 lei
Preț vechi: 414.75 lei
-20% Nou
Puncte Express: 498
Preț estimativ în valută:
58.70€ • 69.02$ • 51.42£
58.70€ • 69.02$ • 51.42£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540410119
ISBN-10: 3540410112
Pagini: 324
Ilustrații: VIII, 316 p.
Dimensiuni: 155 x 233 x 17 mm
Greutate: 0.76 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540410112
Pagini: 324
Ilustrații: VIII, 316 p.
Dimensiuni: 155 x 233 x 17 mm
Greutate: 0.76 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Inference of Finite-State Transducers by Using Regular Grammars and Morphisms.- Computational Complexity of Problems on Probabilistic Grammars and Transducers.- Efficient Ambiguity Detection in C-NFA.- Learning Regular Languages Using Non Deterministic Finite Automata.- Smoothing Probabilistic Automata: An Error-Correcting Approach.- Inferring Subclasses of Contextual Languages.- Permutations and Control Sets for Learning Non-regular Language Families.- On the Complexity of Consistent Identification of Some Classes of Structure Languages.- Computation of Substring Probabilities in Stochastic Grammars.- A Comparative Study of Two Algorithms for Automata Identification.- The Induction of Temporal Grammatical Rules from Multivariate Time Series.- Identification in the Limit with Probability One of Stochastic Deterministic Finite Automata.- Iterated Transductions and Efficient Learning from Positive Data: A Unifying View.- An Inverse Limit of Context-Free Grammars – A New Approach to Identifiability in the Limit.- Synthesizing Context Free Grammars from Sample Strings Based on Inductive CYK Algorithm.- Combination of Estimation Algorithms and Grammatical Inference Techniques to Learn Stochastic Context-Free Grammars.- On the Relationship between Models for Learning in Helpful Environments.- Probabilistic k-Testable Tree Languages.- Learning Context-Free Grammars from Partially Structured Examples.- Identification of Tree Translation Rules from Examples.- Counting Extensional Differences in BC-Learning.- Constructive Learning of Context-Free Languages with a Subpansive Tree.- A Polynomial Time Learning Algorithm of Simple Deterministic Languages via Membership Queries and a Representative Sample.- Improve the Learning of Subsequential Transducers by Using Alignments andDictionaries.
Caracteristici
Includes supplementary material: sn.pub/extras