Geometric and Analytic Number Theory: Universitext
Autor Edmund Hlawka Traducere de Charles Thomas Autor Johannes Schoißengeier, Rudolf Taschneren Limba Engleză Paperback – 2 aug 1991
Din seria Universitext
- 15%
Preț: 390.04 lei -
Preț: 454.23 lei - 15%
Preț: 532.05 lei - 15%
Preț: 487.81 lei - 17%
Preț: 391.44 lei - 15%
Preț: 430.08 lei - 15%
Preț: 392.21 lei - 15%
Preț: 522.85 lei -
Preț: 470.62 lei -
Preț: 442.01 lei -
Preț: 399.23 lei - 17%
Preț: 462.80 lei - 15%
Preț: 390.95 lei - 19%
Preț: 464.48 lei -
Preț: 349.10 lei -
Preț: 389.61 lei -
Preț: 409.96 lei - 15%
Preț: 391.81 lei - 15%
Preț: 426.68 lei - 15%
Preț: 390.04 lei - 15%
Preț: 466.06 lei -
Preț: 469.31 lei - 15%
Preț: 425.22 lei - 15%
Preț: 460.67 lei -
Preț: 385.01 lei -
Preț: 335.93 lei -
Preț: 417.96 lei - 19%
Preț: 451.23 lei - 15%
Preț: 398.09 lei - 15%
Preț: 572.89 lei -
Preț: 367.85 lei - 15%
Preț: 456.60 lei - 15%
Preț: 513.20 lei -
Preț: 374.91 lei - 15%
Preț: 476.97 lei - 15%
Preț: 451.40 lei -
Preț: 465.60 lei - 15%
Preț: 618.64 lei - 20%
Preț: 490.60 lei - 15%
Preț: 579.03 lei - 15%
Preț: 565.69 lei -
Preț: 471.15 lei -
Preț: 367.12 lei -
Preț: 475.01 lei -
Preț: 443.31 lei - 20%
Preț: 319.60 lei - 15%
Preț: 455.18 lei - 15%
Preț: 576.22 lei - 15%
Preț: 560.81 lei
Preț: 615.35 lei
Preț vechi: 723.94 lei
-15% Nou
Puncte Express: 923
Preț estimativ în valută:
108.89€ • 126.99$ • 95.61£
108.89€ • 126.99$ • 95.61£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Livrare express 11-17 decembrie pentru 37.51 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540520160
ISBN-10: 3540520163
Pagini: 252
Ilustrații: X, 238 p.
Dimensiuni: 170 x 242 x 13 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540520163
Pagini: 252
Ilustrații: X, 238 p.
Dimensiuni: 170 x 242 x 13 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
1. The Dirichlet Approximation Theorem.- Dirichlet approximation theorem — Elementary number theory — Pell equation — Cantor series — Irrationality of ?(2) and ?(3) — multidimensional diophantine approximation — Siegel’s lemma — Exercises on Chapter 1..- 2. The Kronecker Approximation Theorem.- Reduction modulo 1 — Comments on Kronecker’s theorem — Linearly independent numbers — Estermann’s proof — Uniform Distribution modulo 1 — Weyl’s criterion — Fundamental equation of van der Corput — Main theorem of uniform distribution theory — Exercises on Chapter 2..- 3. Geometry of Numbers.- Lattices — Lattice constants — Figure lattices — Fundamental region — Minkowski’s lattice point theorem — Minkowski’s linear form theorem — Product theorem for homogeneous linear forms — Applications to diophantine approximation — Lagrange’s theorem — the lattice?(i) — Sums of two squares — Blichfeldt’s theorem — Minkowski’s and Hlawka’s theorem — Rogers’ proof — Exercises on Chapter 3..- 4. Number Theoretic Functions.- Landau symbols — Estimates of number theoretic functions — Abel transformation — Euler’s sum formula — Dirichlet divisor problem — Gauss circle problem — Square-free and k-free numbers — Vinogradov’s lemma — Formal Dirichlet series — Mangoldt’s function — Convergence of Dirichlet series — Convergence abscissa — Analytic continuation of the zeta- function — Landau’s theorem — Exercises on Chapter 4..- 5. The Prime Number Theorem.- Elementary estimates — Chebyshev’s theorem — Mertens’ theorem — Euler’s proof of the infinity of prime numbers — Tauberian theorem of Ingham and Newman — Simplified version of the Wiener-Ikehara theorem —Mertens’ trick — Prime number theorem — The ?-function for number theory in ?(i) — Hecke’s prime number theorem for ?(i) — Exercises on Chapter 5..- 6. Characters of Groups of Residues.- Structure of finite abelian groups — The character group — Dirichlet characters — Dirichlet L-series — Prime number theorem for arithmetic progressions — Gauss sums — Primitive characters — Theorem of Pólya and Vinogradov — Number of power residues — Estimate of the smallest primitive root — Quadratic reciprocity theorem — Quadratic Gauss sums — Sign of a Gauss sum — Exercises on Chapter 6..- 7. The Algorithm of Lenstra, Lenstra and Lovász.- Addenda.- Solutions for the Exercises.- Index of Names.- Index of Terms.