Introduction to Cyclotomic Fields: Graduate Texts in Mathematics, cartea 83
Autor Lawrence C. Washingtonen Limba Engleză Paperback – 27 sep 2012
The second edition includes a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture. There is also a chapter giving other recent developments, including primality testing via Jacobi sums and Sinnott's proof of the vanishing of Iwasawa's f-invariant.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 516.88 lei 6-8 săpt. | |
| Springer – 27 sep 2012 | 516.88 lei 6-8 săpt. | |
| Hardback (1) | 521.60 lei 6-8 săpt. | |
| Springer – 5 dec 1996 | 521.60 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
-
Preț: 417.32 lei - 17%
Preț: 570.66 lei - 15%
Preț: 395.33 lei -
Preț: 383.79 lei -
Preț: 391.33 lei - 15%
Preț: 485.89 lei -
Preț: 433.17 lei - 17%
Preț: 431.72 lei -
Preț: 374.76 lei -
Preț: 439.55 lei - 15%
Preț: 585.17 lei - 15%
Preț: 573.07 lei -
Preț: 484.64 lei -
Preț: 437.67 lei -
Preț: 313.64 lei - 17%
Preț: 395.83 lei - 15%
Preț: 387.63 lei - 15%
Preț: 464.09 lei - 15%
Preț: 469.94 lei - 15%
Preț: 394.57 lei -
Preț: 370.26 lei - 15%
Preț: 488.98 lei - 15%
Preț: 388.69 lei - 15%
Preț: 578.90 lei - 15%
Preț: 389.42 lei - 15%
Preț: 387.79 lei - 15%
Preț: 534.41 lei - 19%
Preț: 478.29 lei -
Preț: 432.53 lei -
Preț: 479.83 lei - 18%
Preț: 616.48 lei - 15%
Preț: 525.56 lei - 15%
Preț: 383.47 lei -
Preț: 363.82 lei - 15%
Preț: 394.36 lei - 15%
Preț: 392.05 lei - 15%
Preț: 393.01 lei - 15%
Preț: 394.35 lei - 15%
Preț: 393.06 lei - 15%
Preț: 628.10 lei - 15%
Preț: 393.56 lei -
Preț: 387.39 lei - 15%
Preț: 430.05 lei - 15%
Preț: 535.56 lei - 15%
Preț: 398.85 lei - 15%
Preț: 464.42 lei - 17%
Preț: 396.67 lei
Preț: 516.88 lei
Preț vechi: 608.10 lei
-15% Nou
Puncte Express: 775
Preț estimativ în valută:
91.47€ • 106.67$ • 80.31£
91.47€ • 106.67$ • 80.31£
Carte tipărită la comandă
Livrare economică 15-29 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461273462
ISBN-10: 1461273463
Pagini: 508
Ilustrații: XIV, 490 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.7 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461273463
Pagini: 508
Ilustrații: XIV, 490 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.7 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
1 Fermat’s Last Theorem.- 2 Basic Results.- 3 Dirichlet Characters.- 4 Dirichlet L-series and Class Number Formulas.- 5 p-adic L-functions and Bernoulli Numbers.- 5.1. p-adic functions.- 5.2. p-adic L-functions.- 5.3. Congruences.- 5.4. The value at s = 1.- 5.5. The p-adic regulator.- 5.6. Applications of the class number formula.- 6 Stickelberger’s Theorem.- 6.1. Gauss sums.- 6.2. Stickelberger’s theorem.- 6.3. Herbrand’s theorem.- 6.4. The index of the Stickelberger ideal.- 6.5. Fermat’s Last Theorem.- 7 Iwasawa’s Construction of p-adic L-functions.- 7.1. Group rings and power series.- 7.2. p-adic L-functions.- 7.3. Applications.- 7.4. Function fields.- 7.5. µ = 0.- 8 Cyclotomic Units.- 8.1. Cyclotomic units.- 8.2. Proof of the p-adic class number formula.- 8.3. Units of$$\mathbb{Q}\left( {{\zeta _p}} \right)$$and Vandiver’s conjecture.- 8.4. p-adic expansions.- 9 The Second Case of Fermat’s Last Theorem.- 9.1. The basic argument.- 9.2. The theorems.- 10 Galois Groups Acting on Ideal Class Groups.- 10.1. Some theorems on class groups.- 10.2. Reflection theorems.- 10.3. Consequences of Vandiver’s conjecture.- 11 Cyclotomic Fields of Class Number One.- 11.1. The estimate for even characters.- 11.2. The estimate for all characters.- 11.3. The estimate for hm-.- 11.4. Odlyzko’s bounds on discriminants.- 11.5. Calculation of hm+.- 12 Measures and Distributions.- 12.1. Distributions.- 12.2. Measures.- 12.3. Universal distributions.- 13 Iwasawa’s Theory of$${\mathbb{Z}_p} -$$extensions.- 13.1. Basic facts.- 13.2. The structure of A-modules.- 13.3. Iwasawa’s theorem.- 13.4. Consequences.- 13.5. The maximal abelian p-extension unramified outside p.- 13.6. The main conjecture.- 13.7. Logarithmic derivatives.- 13.8. Local units modulo cyclotomicunits.- 14 The Kronecker—Weber Theorem.- 15 The Main Conjecture and Annihilation of Class Groups.- 15.1. Stickelberger’s theorem.- 15.2. Thaine’s theorem.- 15.3. The converse of Herbrand’s theorem.- 15.4. The Main Conjecture.- 15.5. Adjoints.- 15.6. Technical results from Iwasawa theory.- 15.7. Proof of the Main Conjecture.- 16 Miscellany.- 16.1. Primality testing using Jacobi sums.- 16.2. Sinnott’s proof that µ = 0.- 16.3. The non-p-part of the class number in a$${\mathbb{Z}_p} -$$extension.- 1. Inverse limits.- 2. Infinite Galois theory and ramification theory.- 3. Class field theory.- Tables.- 1. Bernoulli numbers.- 2. Irregular primes.- 3. Relative class numbers.- 4. Real class numbers.- List of Symbols.