Discrete Iterations: A Metric Study: Springer Series in Computational Mathematics, cartea 6
Autor Francois Robert Traducere de Jon Rokneen Limba Engleză Paperback – 6 oct 2011
Din seria Springer Series in Computational Mathematics
- 18%
Preț: 1193.86 lei - 18%
Preț: 977.81 lei - 15%
Preț: 478.52 lei - 18%
Preț: 698.75 lei -
Preț: 388.57 lei -
Preț: 371.93 lei - 18%
Preț: 1344.60 lei -
Preț: 379.51 lei - 18%
Preț: 1341.56 lei - 18%
Preț: 754.11 lei - 20%
Preț: 957.51 lei - 24%
Preț: 688.04 lei - 15%
Preț: 624.14 lei -
Preț: 385.26 lei - 18%
Preț: 711.78 lei - 15%
Preț: 618.83 lei -
Preț: 366.19 lei - 18%
Preț: 869.63 lei - 18%
Preț: 974.87 lei - 18%
Preț: 1068.74 lei -
Preț: 378.95 lei - 18%
Preț: 911.19 lei - 15%
Preț: 624.95 lei - 15%
Preț: 632.63 lei - 15%
Preț: 501.54 lei - 15%
Preț: 634.54 lei - 18%
Preț: 1343.07 lei - 18%
Preț: 1082.55 lei - 18%
Preț: 1178.65 lei - 18%
Preț: 763.03 lei - 15%
Preț: 682.79 lei
Preț: 612.05 lei
Preț vechi: 720.07 lei
-15% Nou
Puncte Express: 918
Preț estimativ în valută:
108.31€ • 127.00$ • 95.11£
108.31€ • 127.00$ • 95.11£
Carte tipărită la comandă
Livrare economică 05-19 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642648823
ISBN-10: 3642648827
Pagini: 220
Ilustrații: XVI, 198 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642648827
Pagini: 220
Ilustrații: XVI, 198 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Discrete Iterations and Automata Networks: Basic Concepts.- 1. Discrete Iterations and Their Graphs.- 2. Examples.- 3. Connectivity Graphs and Incidence Matrices.- 4. Interpretations in Terms of Automata Networks.- 5. Serial Operation and the Gauss-Seidel Operator.- 6. Serial-Parallel Modes of Operation and the Associated Operators.- 2. A Metric Tool.- 1. The Boolean Vector Distance d.- 2. Some Basic Inequalities.- 3. First Applications.- 4. Serial-Parallel Operators. An Outline.- 5. Other Possible Metric Tools.- 3. The Boolean Perron-Frobenius and Stein-Rosenberg Theorems.- 1. Eigenelements of a Boolean Matrix.- 2. The Boolean Perron-Frobenius Theorem.- 3. The Boolean Stein-Rosenberg Theorems.- 4. Conclusion.- 4. Boolean Contraction and Applications.- 1. Boolean Contraction.- 2. A Fixed Point Theorem.- 3. Examples.- 4. Serial Mode: Gauss-Seidel Iteration for a Contracting Operator.- 5. Examples.- 6. Comparison of Operating Modes for a Contracting Operator.- 7. Examples.- 8. Rounding-Off: Successive Gauss- Seidelisations.- 9. Conclusions.- 5.Comparison of Operating Modes.- 1. Comparison of Serial and Parallel Operating Modes.- 2. Examples.- 3. Extension to the Comparison of Two Serial-Parallel Modes of Operation.- 4. Examples.- 5. Conclusions.- 6. The Discrete Derivative and Local Convergence.- 1. The Discrete Derivative.- 2. The Discrete Derivative and the Vector Distance.- 3. Application: Characterization of the Local Convergence in the Immediate Neighbourhood of a Fixed Point.- 4. Interpretation in Terms of Automata Networks.- 5. Application: Local Convergence in a Massive Neighbourhood of a Fixed Point.- 6. Gauss-Seidel.- 7. The Derivative of a Function Composition.- 8. The Study of Cycles: Attractive Cycles.- 9. Conclusions.- 7. A Discrete Newton Method.- 1. Context.- 2. Two Simple Examples.- 3. Interpretation in Terms of Automata.- 4. The Study of Convergence: The Case of the Simplified Newton Method.- 5. The Study of Convergence, The General Case.- 6. The Efficiency of an Iterative Method on a Finite Set.- 7. Numerical Experiments.- 8. Conclusions.- General Conclusion.- Appendix 2. The Number of Regular n x n Matrices with Elements in Z/p (p prime).- Appendix 4. Continuous Iterations-Discrete Iterations.- Inde.