Minimization Methods for Non-Differentiable Functions: Springer Series in Computational Mathematics, cartea 3
Autor N.Z. Shor Traducere de K. C. Kiwiel, A. Ruszczynskien Limba Engleză Paperback – 14 dec 2011
Din seria Springer Series in Computational Mathematics
- 15%
Preț: 478.52 lei - 18%
Preț: 977.81 lei - 18%
Preț: 698.75 lei -
Preț: 388.57 lei -
Preț: 371.93 lei - 18%
Preț: 1344.60 lei -
Preț: 379.51 lei - 18%
Preț: 1341.56 lei - 18%
Preț: 754.11 lei - 20%
Preț: 957.51 lei - 24%
Preț: 688.04 lei - 15%
Preț: 624.14 lei -
Preț: 385.26 lei - 18%
Preț: 711.78 lei - 15%
Preț: 618.83 lei -
Preț: 366.19 lei - 18%
Preț: 869.63 lei - 18%
Preț: 974.87 lei - 18%
Preț: 1068.74 lei -
Preț: 378.95 lei - 18%
Preț: 911.19 lei - 15%
Preț: 624.95 lei - 15%
Preț: 632.63 lei - 15%
Preț: 634.54 lei - 18%
Preț: 1343.07 lei - 18%
Preț: 1082.55 lei - 18%
Preț: 1178.65 lei - 18%
Preț: 763.03 lei - 15%
Preț: 682.79 lei
Preț: 501.54 lei
Preț vechi: 590.05 lei
-15% Nou
Puncte Express: 752
Preț estimativ în valută:
88.73€ • 104.32$ • 77.72£
88.73€ • 104.32$ • 77.72£
Carte tipărită la comandă
Livrare economică 28 ianuarie-11 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642821202
ISBN-10: 3642821200
Pagini: 176
Ilustrații: VIII, 164 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642821200
Pagini: 176
Ilustrații: VIII, 164 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Special Classes of Nondifferentiable Functions and Generalizations of the Concept of the Gradient.- 1.1 The Need to Introduce Special Classes of Nondifferentiable Functions.- 1.2 Convex Functions. The Concept of Subgradient.- 1.3 Some Methods for Computing Subgradients.- 1.4 Almost Differentiable Functions.- 1.5 Semismooth and Semiconvex Functions.- 2. The Subgradient Method.- 2.1 The Problem of Stepsize Selection in the Subgradient Method.- 2.2 Basic Convergence Results for the Subgradient Method.- 2.3 On the Linear Rate of Convergence of the Subgradient Method.- 2.4 The Subgradient Method and Fejer-type Approximations.- 2.5 Methods of ?-subgradients.- 2.6 An Extension of the Subgradient Method to a Class of Nonconvex Functions. Stochastic Versions and Stability of the Method.- 3. Gradient-type Methods with Space Dilation.- 3.1 Heuristics of Methods with Space Dilation.- 3.2 Operators of Space Dilation.- 3.3 The Subgradient Method with Space Dilation in the Direction of the Gradient.- 3.4 Convergence of Algorithms with Space Dilation.- 3.5 Application of the Subgradient Method with Space Dilation to the Solution of Systems of Nonlinear Equations.- 3.6 A Minimization Method Using the Operation of Space Dilation in the Direction of the Difference of Two Successive Almost-Gradients.- 3.7 Convergence of a Version of the r-Algorithm with Exact Directional Minimization.- 3.8 Relations between SDG Algorithms and Algorithms of Successive Sections.- 3.9 Computational Modifications of Subgradient Methods with Space Dilation.- 4. Applications of Methods for Nonsmooth Optimization to the Solution of Mathematical Programming Problems.- 4.1 Application of Subgradient Algorithms in Decomposition Methods.- 4.2 An Iterative Method for Solving Linear Programming Problems of SpecialStructure.- 4.3 The Solution of Distribution Problems by the Subgradient Method.- 4.4 Experience in Solving Production-Transportation Problems by Subgradient Algorithms with Space Dilation.- 4.5 Application of r-Algorithms to Nonlinear Minimax Problems.- 4.6 Application of Methods for Minimizing Nonsmooth Functions to Problems of Interpreting Gravimetric Observations.- 4.7 Other Areas of Applications of Generalized Gradient Methods.- Concluding Remarks.- References.