Introduction to Shape Optimization: Shape Sensitivity Analysis: Springer Series in Computational Mathematics, cartea 16
Autor Jan Sokolowski, Jean-Paul Zolesioen Limba Engleză Paperback – 13 oct 2012
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 478.52 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 13 oct 2012 | 478.52 lei 6-8 săpt. | |
| Hardback (1) | 565.82 lei 6-8 săpt. | |
| Springer – 17 iun 1992 | 565.82 lei 6-8 săpt. |
Din seria Springer Series in Computational Mathematics
- 18%
Preț: 1193.86 lei - 18%
Preț: 977.81 lei - 18%
Preț: 698.75 lei -
Preț: 388.57 lei -
Preț: 371.93 lei - 18%
Preț: 1344.60 lei -
Preț: 379.51 lei - 18%
Preț: 1341.56 lei - 18%
Preț: 754.11 lei - 20%
Preț: 957.51 lei - 24%
Preț: 687.56 lei - 15%
Preț: 624.14 lei -
Preț: 385.26 lei - 18%
Preț: 711.78 lei - 15%
Preț: 618.83 lei -
Preț: 366.19 lei - 18%
Preț: 869.63 lei - 18%
Preț: 974.87 lei - 18%
Preț: 1068.74 lei -
Preț: 378.95 lei - 18%
Preț: 911.19 lei - 15%
Preț: 624.95 lei - 15%
Preț: 632.63 lei - 15%
Preț: 501.54 lei - 15%
Preț: 634.54 lei - 18%
Preț: 1343.07 lei - 18%
Preț: 1082.55 lei - 18%
Preț: 1178.65 lei - 18%
Preț: 763.03 lei - 15%
Preț: 682.79 lei
Preț: 478.52 lei
Preț vechi: 562.97 lei
-15%
Puncte Express: 718
Preț estimativ în valută:
84.70€ • 98.82$ • 73.34£
84.70€ • 98.82$ • 73.34£
Carte tipărită la comandă
Livrare economică 26 februarie-12 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642634710
ISBN-10: 3642634710
Pagini: 260
Ilustrații: IV, 250 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642634710
Pagini: 260
Ilustrații: IV, 250 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Introduction to shape optimization.- 1.1. Preface.- 2 Preliminaries and the material derivative method.- 2.1. Domains in ?N of class Ck.- Surface measures on ?.- 2.3. Functional spaces.- 2.4. Linear elliptic boundary value problems.- 2.5. Shape functionals.- 2.6. Shape functionals for problems governed by linear elliptic boundary value problems.- 2.7. Convergence of domains.- 2.8. Transformations Tt of domains.- 2.9. The speed method.- 2.10. Admissible speed vector fields Vk(D).- 2.11. Eulerian derivatives of shape functionals.- 2.12. Non-differentiable shape functionals.- 2.13. Properties of Tt transformations.- 2.14. Differentiability of transported functions.- 2.15. Derivatives for t > 0.- 2.16. Derivatives of domain integrals.- 2.17. Change of variables in boundary integrals.- 2.18. Derivatives of boundary integrals.- 2.19. The tangential divergence of the field V on ?.- 2.20. Tangential gradients and Laplace—Beltrami operators on ?.- 2.21. Variational problems on ?.- 2.22. The transport of differential operators.- 2.23. Integration by parts on ?.- 2.24. The transport of Laplace—Beltrami operators.- 2.25. Material derivatives.- 2.26. Material derivatives on ?.- 2.27. The material derivative of a solution to the Laplace equation with Dirichlet boundary conditions.- 2.28. Strong material derivatives for Dirichlet problems.- 2.29. The material derivative of a solution to the Laplace equation with Neumann boundary conditions.- 2.30. Shape derivatives.- 2.31. Derivatives of domain integrals (II).- 2.32. Shape derivatives on ?.- 2.33. Derivatives of boundary integrals.- 3 Shape derivatives for linear problems.- 3.1. The shape derivative for the Dirichlet boundary value problem.- 3.2. The shape derivative for the Neumann boundary value problem.- 3.3.Necessary optimality conditions.- 3.4. Parabolic equations.- 3.5. Shape sensitivity in elasticity.- 3.6. Shape sensitivity analysis of the smallest eigenvalue.- 3.7. Shape sensitivity analysis of the Kirchhoff plate.- 3.8. Shape derivatives of boundary integrals: the non-smooth case in ?2.- 3.9. Shape sensitivity analysis of boundary value problems with singularities.- 3.10. Hyperbolic initial boundary value problems.- 4 Shape sensitivity analysis of variational inequalities.- 4.1. Differential stability of the metric projection in Hilbert spaces.- 4.2. Sensitivity analysis of variational inequalities in Hilbert spaces.- 4.3. The obstacle problem in H1 (?).- 4.4. The Signorini problem.- 4.5. Variational inequalities of the second kind.- 4.6. Sensitivity analysis of the Signorini problem in elasticity.- 4.7. The Signorini problem with given friction.- 4.8. Elasto—Plastic torsion problems.- 4.9. Elasto—Visco—Plastic problems.- References.