Mixed and Hybrid Finite Element Methods: Springer Series in Computational Mathematics, cartea 15
Autor Franco Brezzi, Michel Fortinen Limba Engleză Paperback – 17 sep 2011
Din seria Springer Series in Computational Mathematics
- 15%
Preț: 478.52 lei - 18%
Preț: 698.75 lei -
Preț: 388.57 lei -
Preț: 371.93 lei - 18%
Preț: 1344.60 lei -
Preț: 379.51 lei - 18%
Preț: 1341.56 lei - 20%
Preț: 957.51 lei - 24%
Preț: 688.04 lei - 15%
Preț: 624.14 lei -
Preț: 385.26 lei - 18%
Preț: 711.78 lei - 15%
Preț: 618.83 lei -
Preț: 366.19 lei - 18%
Preț: 869.63 lei - 18%
Preț: 974.87 lei - 18%
Preț: 1068.74 lei -
Preț: 378.95 lei - 18%
Preț: 911.19 lei - 15%
Preț: 624.95 lei - 15%
Preț: 632.63 lei - 15%
Preț: 501.54 lei - 15%
Preț: 634.54 lei - 18%
Preț: 1343.07 lei - 18%
Preț: 1082.55 lei - 18%
Preț: 1178.65 lei - 18%
Preț: 763.03 lei - 15%
Preț: 682.79 lei - 24%
Preț: 689.19 lei
Preț: 754.11 lei
Preț vechi: 919.65 lei
-18% Nou
Puncte Express: 1131
Preț estimativ în valută:
133.42€ • 155.67$ • 116.65£
133.42€ • 155.67$ • 116.65£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461278245
ISBN-10: 1461278244
Pagini: 368
Ilustrații: IX, 350 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461278244
Pagini: 368
Ilustrații: IX, 350 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I: Variational Formulations and Finite Element Methods.- §1. Classical Methods.- §2. Model Problems and Elementary Properties of Some Functional Spaces.- §3. Duality Methods.- §4. Domain Decomposition Methods, Hybrid Methods.- §5. Augmented Variational Formulations.- §6. Transposition Methods.- §7. Bibliographical remarks.- II: Approximation of Saddle Point Problems.- §1. Existence and Uniqueness of Solutions.- §2. Approximation of the Problem.- §3. Numerical Properties of the Discrete Problem.- §4. Solution by Penalty Methods, Convergence of Regularized Problems.- §5. Iterative Solution Methods. Uzawa’s Algorithm.- §6. Concluding Remarks.- III: Function Spaces and Finite Element Approximations.- §1. Properties of the spaces Hs(?) and H(div; ?).- §2. Finite Element Approximations of H1(?) and H2(?).- §3. Approximations of H (div; ?).- §4. Concluding Remarks.- IV: Various Examples.- §1. Nonstandard Methods for Dirichlet’s Problem.- §2. Stokes Problem.- §3. Elasticity Problems.- §4. A Mixed Fourth-Order Problem.- §5. Dual Hybrid Methods for Plate Bending Problems.- V: Complements on Mixed Methods for Elliptic Problems.- §1. Numerical Solutions.- §2. A Brief Analysis of the Computational Effort.- §3. Error Analysis for the Multiplier.- §4. Error Estimates in Other Norms.- §5. Application to an Equation Arising from Semiconductor Theory.- §6. How Things Can Go Wrong.- §7. Augmented Formulations.- VI: Incompressible Materials and Flow Problems.- §1. Introduction.- §2. The Stokes Problem as a Mixed Problem.- §3. Examples of Elements for Incompressible Materials.- §4. Standard Techniques of Proof for the inf-sup Condition.- §5. Macroelement Techniques and Spurious Pressure Modes.- §6. An Alternative Technique of Proof and Generalized Taylor-Hood Element.- §7. Nearly Incompressible Elasticity, Reduced Integration Methods and Relation with Penalty Methods.- §8. Divergence-Free Basis, Discrete Stream Functions.- §9. Other Mixed and Hybrid Methods for Incompressible Flows.- VII: Other Applications.- §1. Mixed Methods for Linear Thin Plates.- §2. Mixed Methods for Linear Elasticity Problems.- §3. Moderately Thick Plates.- References.