Dependability for Systems with a Partitioned State Space: Markov and Semi-Markov Theory and Computational Implementation: Lecture Notes in Statistics, cartea 90
Autor Attila Csenkien Limba Engleză Paperback – 28 iul 1994
Din seria Lecture Notes in Statistics
- 15%
Preț: 607.49 lei -
Preț: 371.20 lei - 15%
Preț: 496.25 lei - 18%
Preț: 909.21 lei - 15%
Preț: 618.19 lei - 15%
Preț: 609.08 lei - 18%
Preț: 1004.42 lei -
Preț: 425.11 lei - 15%
Preț: 614.90 lei - 18%
Preț: 1183.54 lei - 15%
Preț: 608.79 lei - 15%
Preț: 615.97 lei - 15%
Preț: 616.64 lei -
Preț: 368.79 lei - 20%
Preț: 607.59 lei - 15%
Preț: 633.43 lei - 18%
Preț: 907.64 lei -
Preț: 371.97 lei -
Preț: 367.49 lei - 18%
Preț: 905.13 lei - 18%
Preț: 906.03 lei -
Preț: 368.59 lei - 15%
Preț: 608.90 lei - 15%
Preț: 611.12 lei -
Preț: 378.78 lei - 15%
Preț: 675.70 lei - 15%
Preț: 619.75 lei - 15%
Preț: 620.23 lei -
Preț: 367.85 lei - 15%
Preț: 611.74 lei - 15%
Preț: 622.91 lei -
Preț: 366.19 lei - 15%
Preț: 609.85 lei - 15%
Preț: 623.70 lei -
Preț: 364.56 lei - 15%
Preț: 623.52 lei - 15%
Preț: 622.59 lei - 18%
Preț: 750.16 lei - 15%
Preț: 616.45 lei - 18%
Preț: 1059.82 lei - 15%
Preț: 618.34 lei -
Preț: 370.10 lei - 15%
Preț: 615.66 lei - 15%
Preț: 625.26 lei - 15%
Preț: 616.95 lei - 15%
Preț: 613.49 lei
Preț: 371.20 lei
Nou
Puncte Express: 557
Preț estimativ în valută:
65.68€ • 77.13$ • 57.65£
65.68€ • 77.13$ • 57.65£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387943336
ISBN-10: 0387943331
Pagini: 244
Ilustrații: IX, 244 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387943331
Pagini: 244
Ilustrații: IX, 244 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.36 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Stochastic processes for dependability assessment.- 1.1 Markov and semi-Markov processes for dependability assessment.- 1.2 Example systems.- 2 Sojourn times for discrete-parameter Markov chains.- 2.1 Distribution theory for sojourn times and related variables.- 2.2 An application: the sequence of repair events for a three-unit power transmission model.- 3 The number of visits until absorption to subsets of the state space by a discrete-parameter Markov chain: the multivariate case.- 3.1 The probability generating function of M and the probability mass function of L.- 3.2 Further results for n ? {2, 3}.- 3.3 Tabular summary of results in Sections 3.1 and 3.2.- 3.4 A power transmission reliabilty application.- 4 Sojourn times for continuous-parameter Markov chains.- 4.1 Distribution theory for sojourn times.- 4.2 Some further distribution results related to sojourn times.- 4.3 Tabular summary of results in Sections 4.1 and 4.2.- 4.4 An application: further dependability characteristics of the three-unit power transmission model.- 5 The number of visits to a subset of the state space by a continuous-parameter irreducible Markov chain during a finite time interval.- 5.1 The variable $${M_{{A_1}}}(t)$$.- 5.2 An application: the number of repairs of a two-unit power transmission system during a finite time interval.- 6 A compound measure of dependability for continuous-time Markov models of repairable systems.- 6.1 The dependability measure and its evaluation by randomization.- 6.2 The evaluation of ?(k, i, n).- 6.3 Application and computational experience.- 7 A compound measure of dependability for continuous-time absorbing Markov systems.- 7.1 The dependability measure.- 7.2 Proof of Theorem 7.1.- 7.3 Application: the Markov model of the three-unit power transmissionsystem revisited.- 8 Sojourn times for finite semi-Markov processes.- 8.1 A recurrence relation for the Laplace transform of the vector of sojourn times.- 8.2 Laplace transforms of vectors of sojourn times.- 8.3 Proof of Theorem 8.1.- 9 The number of visits to a subset of the state space by an irreducible semi-Markov process during a finite time interval: moment results.- 9.1 Preliminaries on the moments of $${M_{{A_1}}}(t)$$.- 9.2 Main result: the Laplace transform of the measures U?.- 9.3 Proof of Theorem 9.2.- 9.4 Reliability applications.- 10 The number of visits to a subset of the state space by an irreducibe semi-Markov process during a finite time interval: the probability mass function.- 10.1 The Laplace transform of the probability mass function of $${M_{{A_1}}}(t)$$.- 10.2 Numerical inversion of Laplace transforms using Laguerre polynomials and fast Fourier transform.- 10.3 Reliability applications.- 10.4 Implementation issues.- 11 The number of specific service levels of a repairable semi-Markov system during a finite time interval: joint distributions.- 11.1 A recurrence relation for h(t; m1, m2) in the Laplace transform domain.- 11.2 A computation scheme for the Laplace transforms.- 12 Finite time-horizon sojourn times for finite semi-Markov processes.- 12.1 The double Laplace transform of finite-horizon sojourn times.- 12.2 An application: the alternating renewal process.- Postscript.- References.