Cyclotomic Fields: Graduate Texts in Mathematics, cartea 59
Autor S. Langen Limba Engleză Paperback – 6 noi 2011
Din seria Graduate Texts in Mathematics
- 15%
Preț: 466.31 lei -
Preț: 481.70 lei - 15%
Preț: 533.99 lei - 15%
Preț: 383.17 lei - 15%
Preț: 394.35 lei - 15%
Preț: 392.71 lei - 15%
Preț: 394.04 lei - 15%
Preț: 392.75 lei -
Preț: 260.78 lei - 15%
Preț: 388.38 lei -
Preț: 432.82 lei - 17%
Preț: 396.00 lei - 15%
Preț: 571.96 lei -
Preț: 450.27 lei -
Preț: 391.02 lei - 15%
Preț: 576.36 lei - 15%
Preț: 569.57 lei -
Preț: 542.93 lei -
Preț: 381.34 lei - 15%
Preț: 424.86 lei - 15%
Preț: 514.23 lei - 15%
Preț: 541.61 lei -
Preț: 374.48 lei - 15%
Preț: 460.83 lei -
Preț: 481.34 lei - 15%
Preț: 563.78 lei -
Preț: 434.38 lei -
Preț: 373.03 lei - 15%
Preț: 487.42 lei -
Preț: 444.79 lei - 40%
Preț: 344.12 lei - 15%
Preț: 573.07 lei -
Preț: 372.50 lei -
Preț: 442.58 lei - 18%
Preț: 867.22 lei - 15%
Preț: 561.88 lei - 15%
Preț: 566.14 lei - 15%
Preț: 460.53 lei - 15%
Preț: 575.12 lei -
Preț: 434.17 lei -
Preț: 457.36 lei - 15%
Preț: 525.43 lei -
Preț: 484.64 lei - 15%
Preț: 521.68 lei
Preț: 372.15 lei
Puncte Express: 558
Preț estimativ în valută:
65.81€ • 78.04$ • 57.30£
65.81€ • 78.04$ • 57.30£
Carte tipărită la comandă
Livrare economică 31 martie-14 aprilie
Specificații
ISBN-13: 9781461299479
ISBN-10: 1461299470
Pagini: 272
Ilustrații: 253 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461299470
Pagini: 272
Ilustrații: 253 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.39 kg
Ediția:Softcover reprint of the original 1st ed. 1978
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Character Sums.- 1. Character Sums Over Finite Fields.- 2. Stickelberger’s Theorem.- 3. Relations in the Ideal Classes.- 4. Jacobi Sums as Hecke Characters.- 5. Gauss Sums Over Extension Fields.- 6. Application to the Fermat Curve.- 2 Stickelberger Ideals and Bernoulli Distributions.- 1. The Index of the First Stickelberger Ideal.- 2. Bernoulli Numbers.- 3. Integral Stickelberger Ideals.- 4. General Comments on Indices.- 5. The Index for k Even.- 6. The Index for k Odd.- 7. Twistings and Stickelberger Ideals.- 8. Stickelberger Elements as Distributions.- 9. Universal Distributions.- 10. The Davenport-Hasse Distribution.- 3 Complex Analytic Class Number Formulas.- 1. Gauss Sums on Z/mZ.- 2. Primitive L-series.- 3. Decomposition of L-series.- 4. The (±1)-eigenspaces.- 5. Cyclotomic Units.- 6. The Dedekind Determinant.- 7. Bounds for Class Numbers.- 4 The p-adic L-function.- 1. Measures and Power Series.- 2. Operations on Measures and Power Series.- 3. The Mellin Transform and p-adic L-function.- 4. The p-adic Regulator.- 5. The Formal Leopoldt Transform.- 6. The p-adic Leopoldt Transform.- 5 Iwasawa Theory and Ideal Class Groups.- 1. The Iwasawa Algebra.- 2. Weierstrass Preparation Theorem.- 3. Modules over Zp[[X]].- 4. Zp-extensions and Ideal Class Groups.- 5. The Maximal p-abelian p-ramified Extension.- 6. The Galois Group as Module over the Iwasawa Algebra.- 6 Kummer Theory over Cyclotomic Zp-extensions.- 1. The Cyclotomic Zp-extension.- 2. The Maximal p-abelian p-ramified Extension of the Cyclotomic Zp-extension.- 3. Cyclotomic Units as a Universal Distribution.- 4. The Leopoldt-Iwasawa Theorem and the Vandiver Conjecture.- 7 Iwasawa Theory of Local Units.- 1. The Kummer-Takagi Exponents.- 2. Projective Limit of the Unit Groups.- 3. A Basis for U(?) over A.- 4.The Coates-Wiles Homomorphism.- 5. The Closure of the Cyclotomic Units.- 8 Lubin-Tate Theory.- 1. Lubin-Tate Groups.- 2. Formal p-adic Multiplication.- 3. Changing the Prime.- 4. The Reciprocity Law.- 5. The Kummer Pairing.- 6. The Logarithm.- 7. Application of the Logarithm to the Local Symbol.- 9 Explicit Reciprocity Laws.- 1. Statement of the Reciprocity Laws.- 2. The Logarithmic Derivative.- 3. A Local Pairing with the Logarithmic Derivative.- 4. The Main Lemma for Highly Divisible x and ? = xn.- 5. The Main Theorem for the Symbol ?x, xn?n.- 6. The Main Theorem for Divisible x and ? = unit.- 7. End of the Proof of the Main Theorems.