Computer Vision -- ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part I: Lecture Notes in Computer Science, cartea 7724
Editat de Kyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, Zhanyi Huen Limba Engleză Paperback – 4 apr 2013
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (4) | 338.31 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 4 apr 2013 | 338.31 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 4 apr 2013 | 342.11 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 4 apr 2013 | 345.60 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 4 apr 2013 | 346.54 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 323.37 lei - 20%
Preț: 461.65 lei - 20%
Preț: 461.32 lei - 20%
Preț: 390.69 lei - 20%
Preț: 527.36 lei - 15%
Preț: 388.50 lei - 20%
Preț: 461.52 lei - 20%
Preț: 390.35 lei - 20%
Preț: 496.64 lei - 20%
Preț: 461.52 lei - 20%
Preț: 389.72 lei - 15%
Preț: 461.85 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 252.15 lei - 20%
Preț: 391.14 lei - 20%
Preț: 532.54 lei - 20%
Preț: 461.83 lei - 20%
Preț: 255.91 lei - 20%
Preț: 498.46 lei - 20%
Preț: 497.55 lei - 20%
Preț: 499.36 lei - 20%
Preț: 390.12 lei - 20%
Preț: 391.20 lei - 20%
Preț: 532.41 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 390.94 lei - 20%
Preț: 391.86 lei - 20%
Preț: 389.85 lei - 20%
Preț: 498.32 lei - 20%
Preț: 462.67 lei - 20%
Preț: 460.98 lei - 20%
Preț: 424.26 lei - 20%
Preț: 639.72 lei - 15%
Preț: 535.92 lei - 20%
Preț: 532.28 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 461.57 lei - 20%
Preț: 498.50 lei - 20%
Preț: 461.83 lei - 20%
Preț: 249.95 lei
Preț: 346.54 lei
Preț vechi: 433.18 lei
-20% Nou
Puncte Express: 520
Preț estimativ în valută:
61.32€ • 71.91$ • 53.85£
61.32€ • 71.91$ • 53.85£
Carte tipărită la comandă
Livrare economică 04-18 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642373305
ISBN-10: 3642373305
Pagini: 864
Ilustrații: XLII, 821 p. 349 illus.
Dimensiuni: 155 x 235 x 45 mm
Greutate: 1.18 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642373305
Pagini: 864
Ilustrații: XLII, 821 p. 349 illus.
Dimensiuni: 155 x 235 x 45 mm
Greutate: 1.18 kg
Ediția:2013
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Oral Session 1: Object Detection and Learning.- Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer.- Cross-Database Transfer Learning via Learnable and Discriminant Error-Correcting Output Codes.- Human Reidentification with Transferred Metric Learning.- Poster Session 1: Object Detection, Learning and Matching.- Tell Me What You Like and I’ll Tell You What You Are: Discriminating Visual Preferences on Flickr Data.- Local Context Priors for Object Proposal Generation.- Arbitrary-Shape Object Localization Using Adaptive Image Grids.- Disambiguation in Unknown Object Detection by Integrating Image and Speech Recognition Confidences.- Class-Specific Weighted Dominant Orientation Templates for Object Detection.- Salient Object Detection via Color Contrast and Color Distribution.- Data Decomposition and Spatial Mixture Modeling for Part Based Model.- Appearance Sharing for Collective Human Pose Estimation.- Max-Margin Regularization for Reducing Accidentalness in Chamfer Matching.- Coupling-and-Decoupling: A Hierarchical Model for Occlusion-Free Car Detection.- The Pooled NBNN Kernel: Beyond Image-to-Class and Image-to-Image.- Local Hypersphere Coding Based on Edges between Visual Words.- Spatially Local Coding for Object Recognition.- Semantic Segmentation with Millions of Features: Integrating Multiple Cues in a Combined Random Forest Approach.- Semi-Supervised Learning on a Budget: Scaling Up to Large Datasets.- One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery.- Online Semi-Supervised Discriminative Dictionary Learning for SparseRepresentation.- Efficient Discriminative Learning of Class Hierarchy for Many Class Prediction.- Oral Session 2: Object Recognition I.- Grouping Active Contour Fragments for Object Recognition.- Detecting Partially Occluded Objects with an Implicit Shape Model Random Field.- Relative Forest for Attribute Prediction.- Discriminative Dictionary Learning with Pairwise Constraints.- PosterSession 2: Feature, Representation, and Recognition.- Adaptive Unsupervised Multi-view Feature Selection for Visual Concept Recognition.- Iris Recognition Using Consistent Corner Optical Flow.- Face Recognition in Videos – A Graph Based Modified Kernel Discriminant Analysis.- Learning Hierarchical Bag of Words Using Naive Bayes Clustering.- Efficient Human Parsing Based on Sketch Representation.- Exclusive Visual Descriptor Quantization.- Underwater Live Fish Recognition Using a Balance-GuaranteedOptimized Tree.- Local 3D Symmetry for Visual Saliency in 2.5D Point Clouds.- Exploiting Features – Locally Interleaved Sequential Alignment forObject Detection.- Efficient and Scalable 4th-Order Match Propagation.- Hierarchical Object Representations for Visual Recognition via WeaklySupervised Learning.- Invariant Surface-Based Shape Descriptor for Dynamic Surface Encoding.- Linear Discriminant Analysis with Maximum Correntropy Criterion.- AfNet: The Affordance Network.- A Directed Graphical Model for Linear Barcode Scanning from Blurred Images.- A Probabilistic 3D Model Retrieval System Using Sphere Image.- Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes.- Boosting with Side Information.- Generalized Mutual Subspace Based Methods for Image Set Classification.- Oral Session 3: Segmentation and Grouping Simultaneous Monocular 2D Segmentation, 3D Pose Recovery and 3D Reconstruction.- Joint Kernel Learning for Supervised Image Segmentation.- Application of Heterogenous Motion Models towards Structure Recovery from Motion.- Poster Session 3: Segmentation, Grouping, and Classification Locality-Constrained Active Appearance Model.- Modeling Hidden Topics with Dual Local Consistency for Image Analysis.- Design of Non-Linear Discriminative Dictionaries for Image Classification.- Efficient Background Subtraction under Abrupt Illumination Variations.- Naive Bayes Image Classification: Beyond Nearest Neighbors.-Contextual Pooling in Image Classification.- Spatial Graph for Image Classification.- Knowledge Leverage from Contours to Bounding Boxes: A Concise Approach to Annotation.- Efficient Pixel-Grouping Based on Dempster’s Theory of Evidence for Image Segmentation.- Video Segmentation with Superpixels.- A Noise Tolerant Watershed Transformation with Viscous Force for Seeded Image Segmentation.- Active Learning for Interactive Segmentation with Expected ConfidenceChange.- Cross Anisotropic Cost Volume Filtering for Segmentation.
Caracteristici
Up-to-date results in computer vision Fast-track conference proceedings State-of-the-art research