Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II: Lecture Notes in Computer Science, cartea 14092
Editat de Spyridon Bakas, Alessandro Crimi, Ujjwal Baid, Sylwia Malec, Monika Pytlarz, Bhakti Baheti, Maximilian Zenk, Reuben Dorenten Limba Engleză Paperback – 5 feb 2024
The presented contributions describe the research of computational scientists and clinical researchers working on brain lesions - specifically glioma, multiple sclerosis, cerebral stroke, traumatic brain injuries, vestibular schwannoma, and white matter hyper-intensities of presumed vascular origin.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (2) | 400.20 lei 6-8 săpt. | |
| Springer Nature Switzerland – 5 feb 2024 | 400.20 lei 6-8 săpt. | |
| Springer Nature Switzerland – 18 iul 2023 | 456.77 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 400.20 lei
Preț vechi: 500.25 lei
-20% Nou
Puncte Express: 600
Preț estimativ în valută:
70.83€ • 83.06$ • 62.10£
70.83€ • 83.06$ • 62.10£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031441523
ISBN-10: 3031441524
Ilustrații: XIX, 243 p. 75 illus., 59 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.37 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031441524
Ilustrații: XIX, 243 p. 75 illus., 59 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.37 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
Applying Quadratic Penalty Method for Intensity-based Deformable Image Registration on BraTS-Reg Challenge 2022.- WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network.- Self-supervised iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients.- 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast MRI Registration in Brain Tumors.- Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive Learning.- Koos Classification of Vestibular Schwannoma via Image Translation-Based Unsupervised Cross-Modality Domain Adaptation.- MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation.- An Unpaired Cross-modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea.-Weakly Unsupervised Domain Adaptation for Vestibular Schwannoma Segmentation.- Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation.- Enhancing Data Diversity for Self-training Based Unsupervised Cross-modality Vestibular Schwannoma and Cochlea Segmentation.- Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation.- A Local Score Strategy for Weight Aggregation in Federated Learning.- Ensemble Outperforms Single Models in Brain Tumor Segmentation.- FeTS Challenge 2022 Task 1: Implementing FedMGDA+ and a new partitioning.- Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning.- Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation.- Robust Learning Protocol for Federated Tumor Segmentation Challenge.- Model Aggregation for Federated Learning Considering Non-IID andImbalanced Data Distribution.- FedPIDAvg: A PID controller inspired aggregation method for Federated Learning.- Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation.- Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge.