Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Third International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Revised Selected Papers: Lecture Notes in Computer Science, cartea 10670
Editat de Alessandro Crimi, Spyridon Bakas, Hugo Kuijf, Bjoern Menze, Mauricio Reyesen Limba Engleză Paperback – 17 feb 2018
The 40 papers presented in this volume were carefully reviewed and selected from 46 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; and ischemic stroke lesion image segmentation.
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 330.85 lei
Preț vechi: 413.56 lei
-20% Nou
Puncte Express: 496
Preț estimativ în valută:
58.55€ • 68.67$ • 51.34£
58.55€ • 68.67$ • 51.34£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319752372
ISBN-10: 3319752375
Pagini: 517
Ilustrații: XIII, 517 p. 233 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.74 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3319752375
Pagini: 517
Ilustrații: XIII, 517 p. 233 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.74 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Invited Talks.- Dice overlap measures for objects of unknown number: Application to lesion segmentation.- Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials.- Brain Lesion Image Analysis.- Automated Segmentation of Multiple Sclerosis Lesions using Multi-Dimensional Gated Recurrent Units.- Joint Intensity Fusion Image Synthesis Applied to Multiple Sclerosis Lesion Segmentation.- MARCEL (inter-Modality Ane Registration with CorELation ratio): An Application for Brain Shift Correction in Ultrasound-Guided Brain Tumor Resection.- Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks.- Overall Survival Time Prediction for High Grade Gliomas based on Sparse Representation Framework.- Traumatic Brain Lesion Quantication based on Mean Diusivity Changes.- Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries.- Sub-Acute & Chronic Ischemic Stroke Lesion MRI Segmentation.- Brain Tumor Segmentation Using an Adversarial Network.- Brain Cancer Imaging Phenomics Toolkit (brain-CaPTk): An Interactive Platform for Quantitative Analysis of Glioblastoma.- Brain Tumor Image Segmentation.- Deep Learning based Multimodal Brain Tumor Diagnosis.- Multimodal Brain Tumor Segmentation using Ensemble of Forest Method.- Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation.- Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks.- 3D Brain Tumor Segmentation through Integrating Multiple 2D FCNNs.- MRI Brain Tumor Segmentation and Patient Survival Prediction using Random Forests and Fully Convolutional Networks.- Automatic Segmentation and Overall Survival Prediction in Gliomas using Fully Convolutional Neural Network and Texture Analysis.- Multimodal Brain Tumor Segmentation Using 3D Convolutional Networks.- A Conditional Adversarial Network for SemanticSegmentation of Brain Tumor.- Dilated Convolutions for Brain Tumor Segmentation in MRI Scans.- Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation.- TPCNN: Two-phase Patch-based Convolutional Neural Network for Automatic Brain Tumor Segmentation and Survival Prediction.- Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge.- Multi-modal PixelNet for Brain Tumor Segmentation.- Brain Tumor Segmentation using Dense Fully Convolutional Neural Network.- Brain Tumor Segmentation in MRI Scans using Deeply-Supervised Neural Networks.- Brain Tumor Segmentation and Parsing on MRIs using Multiresolution Neural Networks.- Brain Tumor Segmentation using Deep Fully Convolutional Neural Networks.- Glioblastoma and Survival Prediction.- MRI Augmentation via Elastic Registration for Brain Lesions Segmentation.- Cascaded V-Net using ROI masks for brain tumor segmentation.- Brain Tumor Segmentation using a 3D FCN with Multi-Scale Loss.- Brain tumor segmentation using a multi-path CNN based method.- 3D Deep Neural Network-Based Brain Tumor Segmentation Using Multimodality Magnetic Resonance Sequences.- Automated Brain Tumor Segmentation on Magnetic Resonance Images (MRIs) and Patient Overall Survival Prediction using Support Vector Machines.- Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation.- Tumor segmentation from multimodal MRI using random forest with superpixel and tensor based feature extraction.- Towards Uncertainty-assisted Brain Tumor Segmentation and Survival Prediction.- Ischemic Stroke Lesion Image Segmentation.- WMH Segmentation Challenge: a Texture-based Classication Approach.- White Matter Hyperintensities Segmentation In a Few Seconds Using Fully Convolutional Network and Transfer Learning.