Artificial Intelligence in Music, Sound, Art and Design: Theoretical Computer Science and General Issues
Editat de Juan Romero, Tiago Martins, Nereida Rodríguez-Fernándezen Limba Engleză Paperback – 2 apr 2021
The 24 revised full papers and 7 short papers presented in this book were carefully reviewed and selected from 66 submissions. They cover a wide range of topics and application areas, including generative approaches to music and visual art, deep learning, and architecture.
Din seria Theoretical Computer Science and General Issues
- 20%
Preț: 644.00 lei - 20%
Preț: 636.86 lei - 20%
Preț: 328.16 lei - 20%
Preț: 644.93 lei - 20%
Preț: 319.42 lei - 20%
Preț: 327.36 lei - 20%
Preț: 321.81 lei - 20%
Preț: 331.30 lei -
Preț: 380.46 lei - 20%
Preț: 324.99 lei -
Preț: 389.65 lei - 20%
Preț: 639.25 lei - 20%
Preț: 643.20 lei - 20%
Preț: 324.99 lei - 20%
Preț: 322.61 lei - 20%
Preț: 318.30 lei - 20%
Preț: 979.25 lei - 20%
Preț: 319.13 lei - 20%
Preț: 560.93 lei - 20%
Preț: 637.96 lei - 20%
Preț: 633.70 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 335.29 lei -
Preț: 391.54 lei - 20%
Preț: 733.68 lei - 20%
Preț: 326.55 lei - 20%
Preț: 328.16 lei - 20%
Preț: 323.41 lei - 20%
Preț: 316.28 lei - 20%
Preț: 630.51 lei - 20%
Preț: 326.55 lei - 20%
Preț: 326.55 lei - 20%
Preț: 328.16 lei - 20%
Preț: 320.24 lei - 20%
Preț: 641.62 lei - 20%
Preț: 321.81 lei - 20%
Preț: 793.92 lei - 20%
Preț: 552.18 lei -
Preț: 372.67 lei - 20%
Preț: 632.89 lei - 20%
Preț: 318.67 lei - 20%
Preț: 560.93 lei - 20%
Preț: 632.09 lei - 20%
Preț: 326.55 lei - 20%
Preț: 1079.23 lei - 20%
Preț: 321.81 lei - 20%
Preț: 634.45 lei - 18%
Preț: 945.44 lei
Preț: 577.89 lei
Preț vechi: 722.35 lei
-20% Nou
Puncte Express: 867
Preț estimativ în valută:
102.29€ • 119.11$ • 89.33£
102.29€ • 119.11$ • 89.33£
Carte tipărită la comandă
Livrare economică 21 ianuarie-04 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030729134
ISBN-10: 3030729133
Pagini: 508
Ilustrații: XIII, 492 p. 236 illus., 181 illus. in color.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.76 kg
Ediția:1st edition 2021
Editura: Springer
Seria Theoretical Computer Science and General Issues
Locul publicării:Cham, Switzerland
ISBN-10: 3030729133
Pagini: 508
Ilustrații: XIII, 492 p. 236 illus., 181 illus. in color.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.76 kg
Ediția:1st edition 2021
Editura: Springer
Seria Theoretical Computer Science and General Issues
Locul publicării:Cham, Switzerland
Cuprins
Sculpture Inspired Musical Composition, One Possible Approach.- Network Bending: Expressive Manipulation of Deep Generative Models.- SyVMO: Synchronous Variable Markov Oracle for Modeling and Predicting Multi-Part Musical Structures.- Identification of Pure Painting Pigment Using Machine Learning Algorithms.- Evolving Neural Style Transfer Blends.- Evolving Image Enhancement Pipelines.- Genre Recognition from Symbolic Music with CNNs.- Axial Generation: A Concretism-Inspired Method for Synthesizing Highly Varied Artworks.- Interactive, Efficient and Creative Image Generation Using Compositional Pattern-Producing Networks.- Aesthetic Evaluation of Cellular Automata Configurations Using Spatial Complexity and Kolmogorov Complexity.- Auralization of Three-Dimensional Cellular Automata.- Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction.- Convolutional Generative Adversarial Network, via Transfer Learning, for Traditional Scottish Music Generation.- The Enigma of Complexity.- SerumRNN: Step by Step Audio VST Effect Programming.- Parameter Tuning for Wavelet-Based Sound Event Detection Using Neural Networks.- Raga Recognition in Indian Classical Music Using Deep Learning.- The Simulated Emergence of Chord Function.- Incremental Evolution of Stylized Images.- Dissecting Neural Networks Filter Responses for Artistic Style Transfer.- A Fusion of Deep and Shallow Learning to Predict Genres Based on Instrument and Timbre Features.- A Multi-Objective Evolutionary Approach to Identify Relevant Audio Features for Music Segmentation.- Exploring the Effect of Sampling Strategy on Movement Generation with Generative Neural Networks.- "A Good Algorithm Does Not Steal - It Imitates": The Originality Report as a Means of Measuring when a Music Generation Algorithm Copies too Much.- From Music to Image - A Computational Creativity Approach.- “What is human?” A Turing Test for Artistic Creativity.- Mixed-InitiativeLevel Design with RL Brush.- Creating a Digital Mirror of Creative Practice.- An Application for Evolutionary Music Composition Using Autoencoders.- A Swarm Grammar-Based Approach to Virtual World Generation.- Co-Creative Drawing with One-Shot Generative Models.