Analyzing Within-subjects Experiments
Autor John W. Cottonen Limba Engleză Hardback – 1998
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 242.48 lei 6-8 săpt. | |
| Taylor & Francis – 30 mai 2014 | 242.48 lei 6-8 săpt. | |
| Hardback (1) | 386.16 lei 6-8 săpt. | |
| Taylor & Francis – 1998 | 386.16 lei 6-8 săpt. |
Preț: 386.16 lei
Nou
Puncte Express: 579
Preț estimativ în valută:
68.33€ • 80.13$ • 60.01£
68.33€ • 80.13$ • 60.01£
Carte tipărită la comandă
Livrare economică 12-26 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780805828047
ISBN-10: 0805828044
Pagini: 352
Ilustrații: Illustrations
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.73 kg
Ediția:1
Editura: Taylor & Francis
Colecția Psychology Press
Locul publicării:Oxford, United Kingdom
ISBN-10: 0805828044
Pagini: 352
Ilustrații: Illustrations
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.73 kg
Ediția:1
Editura: Taylor & Francis
Colecția Psychology Press
Locul publicării:Oxford, United Kingdom
Public țintă
ProfessionalCuprins
Contents: Preface. An Orientation to Within-Subject Designs. Two-Way Experimental Plans: Split-Plot and Randomized Block Designs. Analyzing Data From a Randomized Block Design Experiment That May Exhibit Time-Related Effects. Interpreting Estimability Information and Reported Estimates of Parameters in SAS(r) GLM Programs. Analyzing Data From Within-Subject Factorial Designs, Taking Into Account Stage-of-Practice Effects. Pretest-Posttest Control Group Designs: Comparing Different Treatment Groups After Pretesting. Switching Treatments in Blocks: AmAm, AmBm, BmAm, or BmBm Patterns With m Stages. ALL M's SHOULD BE SUPERSCRIPT EXCEPT FOR THE LAST ONE. Appendices: A Little About Matrices and Vectors. Using the Gauss Matrix Programming Language.
Recenzii
"Analyzing Within-Subjects Experiments is a unique book. It is written for behavioral researchers, it covers a category of experimental designs..."
—Contemporary Psychology
—Contemporary Psychology
Descriere
This volume focuses on computational techniques appropriate to the analysis of data from within-subjects and crossover within-subjects designs using various statistical packages. For statisticians, behavioral scientists, and researchers.