An Introduction to Stochastic Processes and Their Applications: Springer Series in Statistics
Autor Petar Todorovicen Limba Engleză Paperback – 21 dec 2011
Din seria Springer Series in Statistics
- 18%
Preț: 923.31 lei - 20%
Preț: 512.80 lei -
Preț: 376.01 lei - 15%
Preț: 426.92 lei - 18%
Preț: 752.32 lei - 20%
Preț: 1896.60 lei - 18%
Preț: 858.10 lei - 18%
Preț: 976.81 lei -
Preț: 376.37 lei - 18%
Preț: 1330.29 lei - 18%
Preț: 1165.92 lei - 18%
Preț: 1333.82 lei - 15%
Preț: 563.80 lei - 18%
Preț: 763.49 lei - 15%
Preț: 623.05 lei - 18%
Preț: 954.38 lei - 15%
Preț: 621.17 lei -
Preț: 376.01 lei - 15%
Preț: 622.11 lei - 18%
Preț: 915.43 lei - 18%
Preț: 1071.18 lei - 18%
Preț: 859.03 lei - 15%
Preț: 521.02 lei - 18%
Preț: 918.17 lei - 15%
Preț: 618.99 lei - 15%
Preț: 618.34 lei - 18%
Preț: 1761.16 lei - 15%
Preț: 618.50 lei - 18%
Preț: 968.52 lei - 18%
Preț: 1188.99 lei - 18%
Preț: 1176.08 lei - 18%
Preț: 1274.37 lei - 18%
Preț: 877.81 lei - 18%
Preț: 919.38 lei -
Preț: 376.75 lei - 15%
Preț: 621.17 lei - 18%
Preț: 1331.68 lei - 18%
Preț: 906.32 lei - 15%
Preț: 627.62 lei - 18%
Preț: 1196.88 lei - 18%
Preț: 1500.79 lei - 18%
Preț: 974.24 lei - 18%
Preț: 1183.54 lei - 18%
Preț: 1013.07 lei - 18%
Preț: 775.16 lei - 18%
Preț: 699.51 lei - 18%
Preț: 1026.72 lei - 15%
Preț: 624.77 lei - 18%
Preț: 753.63 lei
Preț: 742.65 lei
Preț vechi: 977.17 lei
-24% Nou
Puncte Express: 1114
Preț estimativ în valută:
131.43€ • 154.14$ • 115.24£
131.43€ • 154.14$ • 115.24£
Carte tipărită la comandă
Livrare economică 21-27 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461397441
ISBN-10: 1461397448
Pagini: 308
Ilustrații: XIII, 290 p.
Dimensiuni: 156 x 244 x 16 mm
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 1461397448
Pagini: 308
Ilustrații: XIII, 290 p.
Dimensiuni: 156 x 244 x 16 mm
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Basic Concepts and Definitions.- 1.1. Definition of a Stochastic Process.- 1.2. Sample Functions.- 1.3. Equivalent Stochastic Processes.- 1.4. Kolmogorov Construction.- 1.5. Principal Classes of Random Processes.- 1.6. Some Applications.- 1.7. Separability.- 1.8. Some Examples.- 1.9. Continuity Concepts.- 1.10. More on Separability and Continuity.- 1.11. Measurable Random Processes.- Problems and Complements.- 2 The Poisson Process and Its Ramifications.- 2.1. Introduction.- 2.2. Simple Point Process on R+.- 2.3. Some Auxiliary Results.- 2.4. Definition of a Poisson Process.- 2.5. Arrival Times ?k.- 2.6. Markov Property of N(t) and Its Implications.- 2.7. Doubly Stochastic Poisson Process.- 2.8. Thinning of a Point Process.- 2.9. Marked Point Processes.- 2.10. Modeling of Floods.- Problems and Complements.- 3 Elements of Brownian Motion.- 3.1. Definitions and Preliminaries.- 3.2. Hitting Times.- 3.3. Extremes of ?(t).- 3.4. Some Properties of the Brownian Paths.- 3.5. Law of the Iterated Logarithm.- 3.6. Some Extensions.- 3.7. The Ornstein-Uhlenbeck Process.- 3.8. Stochastic Integration.- Problems and Complements.- 4 Gaussian Processes.- 4.1. Review of Elements of Matrix Analysis.- 4.2. Gaussian Systems.- 4.3. Some Characterizations of the Normal Distribution.- 4.4. The Gaussian Process.- 4.5. Markov Gaussian Process.- 4.6. Stationary Gaussian Process.- Problems and Complements.- 5 L2 Space.- 5.1. Definitions and Preliminaries.- 5.2. Convergence in Quadratic Mean.- 5.3. Remarks on the Structure of L2.- 5.4. Orthogonal Projection.- 5.5. Orthogonal Basis.- 5.6. Existence of a Complete Orthonormal Sequence in L2.- 5.7. Linear Operators in a Hilbert Space.- 5.8. Projection Operators.- Problems and Complements.- 6 Second-Order Processes.- 6.1. Covariance FunctionC(s,t).- 6.2. Quadratic Mean Continuity and Differentiability.- 6.3. Eigenvalues and Eigenfunctions of C(s, t).- 6.4. Karhunen-Loeve Expansion.- 6.5. Stationary Stochastic Processes.- 6.6. Remarks on the Ergodicity Property.- Problems and Complements.- 7 Spectral Analysis of Stationary Processes.- 7.1. Preliminaries.- 7.2. Proof of the Bochner-Khinchin and Herglotz Theorems.- 7.3. Random Measures.- 7.4. Process with Orthogonal Increments.- 7.5. Spectral Representation.- 7.6. Ramifications of Spectral Representation.- 7.7. Estimation, Prediction, and Filtering.- 7.8. An Application.- 7.9. Linear Transformations.- 7.10. Linear Prediction, General Remarks.- 7.11. The Wold Decomposition.- 7.12. Discrete Parameter Processes.- 7.13. Linear Prediction.- 7.14. Evaluation of the Spectral Characteristic ?(?, h).- 7.15. General Form of Rational Spectral Density.- Problems and Complements.- 8 Markov Processes I.- 8.1. Introduction.- 8.2. Invariant Measures.- 8.3. Countable State Space.- 8.4. Birth and Death Process.- 8.5. Sample Function Properties.- 8.6. Strong Markov Processes.- 8.7. Structure of a Markov Chain.- 8.8. Homogeneous Diffusion.- Problems and Complements.- 9 Markov Processes II: Application of Semigroup Theory.- 9.1. Introduction and Preliminaries.- 9.2. Generator of a Semigroup.- 9.3. The Resolvent.- 9.4. Uniqueness Theorem.- 9.5. The Hille-Yosida Theorem.- 9.6. Examples.- 9.7. Some Refinements and Extensions.- Problems and Complements.- 10 Discrete Parameter Martingales.- 10.1. Conditional Expectation.- 10.2. Discrete Parameter Martingales.- 10.3. Examples.- 10.4. The Upcrossing Inequality.- 10.5. Convergence of Submartingales.- 10.6. Uniformly Integrable Martingales.- Problems and Complements.