Algorithmic Learning Theory: 4th International Workshop, ALT '93, Tokyo, Japan, November 8-10, 1993. Proceedings: Lecture Notes in Computer Science, cartea 744
Editat de Klaus P. Jantke, Shigenobu Kobayashi, Etsuji Tomita, Takashi Yokomorien Limba Engleză Paperback – 20 oct 1993
Din seria Lecture Notes in Computer Science
- 20%
Preț: 1020.28 lei - 20%
Preț: 629.71 lei -
Preț: 395.25 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 342.61 lei - 20%
Preț: 327.36 lei - 20%
Preț: 336.86 lei - 20%
Preț: 487.46 lei - 20%
Preț: 324.19 lei - 20%
Preț: 432.78 lei - 20%
Preț: 293.24 lei - 20%
Preț: 984.64 lei - 20%
Preț: 620.33 lei - 20%
Preț: 850.42 lei - 20%
Preț: 328.94 lei - 20%
Preț: 573.45 lei - 20%
Preț: 1033.45 lei - 20%
Preț: 679.09 lei - 20%
Preț: 373.16 lei - 20%
Preț: 782.57 lei - 20%
Preț: 434.17 lei - 20%
Preț: 489.11 lei - 20%
Preț: 904.16 lei - 20%
Preț: 375.72 lei - 20%
Preț: 400.17 lei - 20%
Preț: 631.96 lei - 20%
Preț: 373.80 lei - 20%
Preț: 556.96 lei - 20%
Preț: 731.97 lei - 20%
Preț: 560.93 lei - 20%
Preț: 733.68 lei - 15%
Preț: 558.12 lei - 20%
Preț: 400.77 lei - 20%
Preț: 488.90 lei - 20%
Preț: 340.04 lei - 20%
Preț: 403.00 lei - 20%
Preț: 327.36 lei - 20%
Preț: 330.54 lei - 20%
Preț: 568.70 lei - 20%
Preț: 563.29 lei - 20%
Preț: 315.62 lei - 20%
Preț: 355.27 lei - 20%
Preț: 733.68 lei - 20%
Preț: 793.92 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 519.32 lei
Preț: 326.87 lei
Preț vechi: 408.59 lei
-20%
Puncte Express: 490
Preț estimativ în valută:
57.81€ • 67.83$ • 50.14£
57.81€ • 67.83$ • 50.14£
Carte tipărită la comandă
Livrare economică 09-23 martie
Specificații
ISBN-13: 9783540573708
ISBN-10: 3540573704
Pagini: 444
Ilustrații: XI, 428 p.
Dimensiuni: 155 x 233 x 23 mm
Greutate: 0.62 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540573704
Pagini: 444
Ilustrații: XI, 428 p.
Dimensiuni: 155 x 233 x 23 mm
Greutate: 0.62 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Identifying and using patterns in sequential data.- Learning theory toward Genome Informatics.- Optimal layered learning: A PAC approach to incremental sampling.- Reformulation of explanation by linear logic toward logic for explanation.- Towards efficient inductive synthesis of expressions from input/output examples.- A typed ?-calculus for proving-by-example and bottom-up generalization procedure.- Case-based representation and learning of pattern languages.- Inductive resolution.- Generalized unification as background knowledge in learning logic programs.- Inductive inference machines that can refute hypothesis spaces.- On the duality between mechanistic learners and what it is they learn.- On aggregating teams of learning machines.- Learning with growing quality.- Use of reduction arguments in determining Popperian FIN-type learning capabilities.- Properties of language classes with finite elasticity.- Uniform characterizations of various kinds of language learning.- How to invent characterizable inference methods for regular languages.- Neural Discriminant Analysis.- A new algorithm for automatic configuration of Hidden Markov Models.- On the VC-dimension of depth four threshold circuits and the complexity of Boolean-valued functions.- On the sample complexity of consistent learning with one-sided error.- Complexity of computing Vapnik-Chervonenkis dimension.- ?-approximations of k-label spaces.- Exact learning of linear combinations of monotone terms from function value queries.- Thue systems and DNA — A learning algorithm for a subclass.- The VC-dimensions of finite automata with n states.- Unifying learning methods by colored digraphs.- A perceptual criterion for visually controlling learning.- Learning strategies using decision lists.- A decomposition basedinduction model for discovering concept clusters from databases.- Algebraic structure of some learning systems.- Induction of probabilistic rules based on rough set theory.