Algorithmic Learning Theory: 4th International Workshop, ALT '93, Tokyo, Japan, November 8-10, 1993. Proceedings: Lecture Notes in Computer Science, cartea 744
Editat de Klaus P. Jantke, Shigenobu Kobayashi, Etsuji Tomita, Takashi Yokomorien Limba Engleză Paperback – 20 oct 1993
Din seria Lecture Notes in Computer Science
- 20%
Preț: 461.83 lei - 20%
Preț: 461.57 lei - 20%
Preț: 424.26 lei - 20%
Preț: 390.69 lei - 20%
Preț: 498.50 lei - 15%
Preț: 388.50 lei - 20%
Preț: 390.35 lei - 20%
Preț: 460.98 lei - 20%
Preț: 461.52 lei - 20%
Preț: 497.55 lei - 20%
Preț: 389.72 lei - 20%
Preț: 461.83 lei - 20%
Preț: 389.90 lei - 20%
Preț: 497.04 lei - 20%
Preț: 462.05 lei - 20%
Preț: 391.14 lei - 20%
Preț: 389.85 lei - 20%
Preț: 461.32 lei - 20%
Preț: 498.32 lei - 20%
Preț: 496.64 lei - 20%
Preț: 532.28 lei - 20%
Preț: 527.36 lei - 20%
Preț: 498.46 lei - 15%
Preț: 461.85 lei - 20%
Preț: 390.12 lei - 20%
Preț: 532.41 lei - 20%
Preț: 462.24 lei - 20%
Preț: 391.14 lei - 20%
Preț: 461.77 lei - 20%
Preț: 390.35 lei - 20%
Preț: 461.06 lei - 20%
Preț: 461.65 lei - 20%
Preț: 390.18 lei - 20%
Preț: 392.64 lei - 20%
Preț: 252.15 lei - 20%
Preț: 390.94 lei - 20%
Preț: 461.52 lei - 20%
Preț: 391.86 lei - 20%
Preț: 532.54 lei - 20%
Preț: 462.67 lei - 20%
Preț: 461.65 lei - 20%
Preț: 639.72 lei - 20%
Preț: 255.91 lei - 15%
Preț: 535.92 lei - 20%
Preț: 535.77 lei - 5%
Preț: 516.27 lei - 20%
Preț: 499.36 lei - 20%
Preț: 391.20 lei - 20%
Preț: 391.20 lei - 20%
Preț: 249.95 lei
Preț: 326.87 lei
Preț vechi: 408.59 lei
-20% Nou
Puncte Express: 490
Preț estimativ în valută:
57.85€ • 67.84$ • 50.72£
57.85€ • 67.84$ • 50.72£
Carte tipărită la comandă
Livrare economică 26 ianuarie-09 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540573708
ISBN-10: 3540573704
Pagini: 444
Ilustrații: XI, 428 p.
Dimensiuni: 155 x 233 x 23 mm
Greutate: 0.62 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540573704
Pagini: 444
Ilustrații: XI, 428 p.
Dimensiuni: 155 x 233 x 23 mm
Greutate: 0.62 kg
Ediția:1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Identifying and using patterns in sequential data.- Learning theory toward Genome Informatics.- Optimal layered learning: A PAC approach to incremental sampling.- Reformulation of explanation by linear logic toward logic for explanation.- Towards efficient inductive synthesis of expressions from input/output examples.- A typed ?-calculus for proving-by-example and bottom-up generalization procedure.- Case-based representation and learning of pattern languages.- Inductive resolution.- Generalized unification as background knowledge in learning logic programs.- Inductive inference machines that can refute hypothesis spaces.- On the duality between mechanistic learners and what it is they learn.- On aggregating teams of learning machines.- Learning with growing quality.- Use of reduction arguments in determining Popperian FIN-type learning capabilities.- Properties of language classes with finite elasticity.- Uniform characterizations of various kinds of language learning.- How to invent characterizable inference methods for regular languages.- Neural Discriminant Analysis.- A new algorithm for automatic configuration of Hidden Markov Models.- On the VC-dimension of depth four threshold circuits and the complexity of Boolean-valued functions.- On the sample complexity of consistent learning with one-sided error.- Complexity of computing Vapnik-Chervonenkis dimension.- ?-approximations of k-label spaces.- Exact learning of linear combinations of monotone terms from function value queries.- Thue systems and DNA — A learning algorithm for a subclass.- The VC-dimensions of finite automata with n states.- Unifying learning methods by colored digraphs.- A perceptual criterion for visually controlling learning.- Learning strategies using decision lists.- A decomposition basedinduction model for discovering concept clusters from databases.- Algebraic structure of some learning systems.- Induction of probabilistic rules based on rough set theory.