Advances in Evolutionary Algorithms
Autor Chang Wook Ahnen Limba Engleză Hardback – 2 mar 2006
- Bridging the gap between theory and practice of GEAs, thereby providing practical design guidelines.
- Demonstrating the practical use of the suggested road map.
- Offering a useful tool to significantly enhance the exploratory power in time-constrained and memory-limited applications.
- Providing a class of promising procedures that are capable of scalably solving hard problems in the continuous domain.
- Opening an important track for multiobjective GEA research that relies on decomposition principle.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 610.63 lei 6-8 săpt. | |
| Springer Berlin, Heidelberg – 30 noi 2010 | 610.63 lei 6-8 săpt. | |
| Hardback (1) | 616.90 lei 6-8 săpt. | |
| Springer – 2 mar 2006 | 616.90 lei 6-8 săpt. |
Preț: 616.90 lei
Preț vechi: 725.77 lei
-15% Nou
Puncte Express: 925
Preț estimativ în valută:
109.17€ • 127.31$ • 95.85£
109.17€ • 127.31$ • 95.85£
Carte tipărită la comandă
Livrare economică 16-30 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540317586
ISBN-10: 3540317589
Pagini: 188
Ilustrații: XVI, 172 p.
Dimensiuni: 160 x 241 x 15 mm
Greutate: 0.45 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540317589
Pagini: 188
Ilustrații: XVI, 172 p.
Dimensiuni: 160 x 241 x 15 mm
Greutate: 0.45 kg
Ediția:2006
Editura: Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Practical Genetic Algorithms.- Real-World Application: Routing Problem.- Elitist Compact Genetic Algorithms.- Real-coded Bayesian Optimization Algorithm.- Multiobjective Real-coded Bayesian Optimization Algorithm.- Conclusions.
Textul de pe ultima copertă
Genetic and evolutionary algorithms (GEAs) have often achieved an enviable success in solving optimization problems in a wide range of disciplines. The goal of this book is to provide effective optimization algorithms for solving a broad class of problems quickly, accurately, and reliably by employing evolutionary mechanisms. In this regard, five significant issues have been investigated:
- Bridging the gap between theory and practice of GEAs, thereby providing practical design guidelines.
- Demonstrating the practical use of the suggested road map.
- Offering a useful tool to significantly enhance the exploratory power in time-constrained and memory-limited applications.
- Providing a class of promising procedures that are capable of scalably solving hard problems in the continuous domain.
- Opening an important track for multiobjective GEA research that relies on decomposition principle.
Caracteristici
Recent advances in evolutionary Algorithms