Advances in Bias and Fairness in Information Retrieval: 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers: Communications in Computer and Information Science, cartea 1840
Editat de Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stiloen Limba Engleză Paperback – 15 iul 2023
The 10 full papers and 4 short papers included in this book were carefully reviewed and selected from 36 submissions. The present recent research in the following topics: biases exploration and assessment; mitigation strategies against biases; biases in newly emerging domains of application, including healthcare, Wikipedia, and news, novel perspectives; and conceptualizations of biases in the context of generative models and graph neural networks.
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (3) | 314.54 lei 6-8 săpt. | |
| Springer International Publishing – 25 iun 2021 | 314.54 lei 6-8 săpt. | |
| Springer International Publishing – 19 iun 2022 | 395.77 lei 6-8 săpt. | |
| Springer Nature Switzerland – 15 iul 2023 | 451.38 lei 6-8 săpt. |
Din seria Communications in Computer and Information Science
- 20%
Preț: 460.54 lei - 20%
Preț: 313.10 lei - 20%
Preț: 643.20 lei - 20%
Preț: 312.30 lei - 20%
Preț: 324.99 lei - 20%
Preț: 630.84 lei - 20%
Preț: 634.45 lei - 20%
Preț: 321.17 lei - 20%
Preț: 324.68 lei - 20%
Preț: 631.00 lei - 20%
Preț: 631.31 lei - 20%
Preț: 633.83 lei -
Preț: 377.68 lei - 20%
Preț: 388.30 lei - 20%
Preț: 317.05 lei -
Preț: 371.37 lei - 20%
Preț: 323.23 lei - 20%
Preț: 423.73 lei - 20%
Preț: 321.81 lei - 20%
Preț: 319.13 lei - 20%
Preț: 630.51 lei - 20%
Preț: 325.61 lei - 20%
Preț: 321.17 lei - 20%
Preț: 321.81 lei - 20%
Preț: 325.79 lei - 20%
Preț: 640.83 lei - 20%
Preț: 323.23 lei - 20%
Preț: 325.79 lei - 20%
Preț: 317.68 lei - 20%
Preț: 635.26 lei - 15%
Preț: 623.39 lei - 20%
Preț: 628.32 lei - 20%
Preț: 319.42 lei - 20%
Preț: 324.99 lei - 20%
Preț: 1014.25 lei - 20%
Preț: 804.07 lei - 20%
Preț: 529.54 lei - 20%
Preț: 631.31 lei - 20%
Preț: 1183.08 lei - 20%
Preț: 494.98 lei - 20%
Preț: 388.26 lei - 20%
Preț: 318.67 lei - 20%
Preț: 389.14 lei - 20%
Preț: 323.23 lei - 20%
Preț: 458.73 lei - 20%
Preț: 530.40 lei - 20%
Preț: 388.00 lei - 20%
Preț: 632.09 lei - 20%
Preț: 388.91 lei - 20%
Preț: 310.73 lei
Preț: 451.38 lei
Preț vechi: 564.22 lei
-20% Nou
Puncte Express: 677
Preț estimativ în valută:
79.86€ • 93.04$ • 69.74£
79.86€ • 93.04$ • 69.74£
Carte tipărită la comandă
Livrare economică 17-31 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031372483
ISBN-10: 3031372484
Ilustrații: X, 177 p. 43 illus., 37 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.27 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
ISBN-10: 3031372484
Ilustrații: X, 177 p. 43 illus., 37 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.27 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seria Communications in Computer and Information Science
Locul publicării:Cham, Switzerland
Cuprins
A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations.- Measuring Bias in Multimodal Models: Multimodal Composite Association Score.- Evaluating Fairness Metrics.- Utilizing Implicit Feedback for User Mainstreaminess Evaluation and Bias Detection in Recommender Systems.- Preserving Utility in Fair Top-k Ranking with Intersectional Bias.- Mitigating Position Bias in Hotels Recommender Systems.- Improving Recommender System Diversity with Variational Autoencoders.- Addressing Biases in the Texts using an End-to-End Pipeline Approach.- Bootless Application of Greedy Re-ranking Algorithms in Fair Neural Team Formation.- How do you feel? Information Retrieval in Psychotherapy and Fair Ranking Assessment.- Understanding Search Behavior Bias in Wikipedia.- Do you MIND? Reflections on the MIND dataset for research on diversity in news recommendations.- Detecting and Measuring Social Bias of Arabic Generative Models in the Context of Search and Recommendation.- What are we missing in algorithmic fairness? Discussing open challenges for fairness analysis in user profiling with Graph Neural Networks.