Advanced Analytics and Learning on Temporal Data: 8th ECML PKDD Workshop, AALTD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers: Lecture Notes in Computer Science, cartea 14343
Editat de Georgiana Ifrim, Romain Tavenard, Anthony Bagnall, Patrick Schaefer, Simon Malinowski, Thomas Guyet, Vincent Lemaireen Limba Engleză Paperback – 20 dec 2023
The 20 full papers were carefully reviewed and selected from 28 submissions. They are organized in the following topical section as follows: Machine Learning; Data Mining; Pattern Analysis; Statistics to Share their Challenges and Advances in Temporal Data Analysis.
Din seria Lecture Notes in Computer Science
- 20%
Preț: 400.77 lei - 20%
Preț: 754.11 lei - 20%
Preț: 324.19 lei - 20%
Preț: 373.80 lei - 20%
Preț: 342.61 lei - 20%
Preț: 403.00 lei - 20%
Preț: 573.45 lei -
Preț: 395.25 lei - 20%
Preț: 487.46 lei - 20%
Preț: 355.27 lei - 20%
Preț: 731.97 lei - 20%
Preț: 293.24 lei - 20%
Preț: 669.21 lei - 20%
Preț: 984.64 lei - 20%
Preț: 620.33 lei - 20%
Preț: 336.86 lei - 20%
Preț: 330.54 lei - 20%
Preț: 313.87 lei - 20%
Preț: 679.09 lei - 20%
Preț: 373.16 lei - 20%
Preț: 782.57 lei - 20%
Preț: 434.17 lei - 20%
Preț: 489.11 lei - 20%
Preț: 904.16 lei - 20%
Preț: 375.72 lei - 20%
Preț: 400.17 lei - 20%
Preț: 432.78 lei - 20%
Preț: 631.96 lei - 20%
Preț: 432.11 lei - 20%
Preț: 1359.66 lei - 20%
Preț: 556.96 lei - 20%
Preț: 488.90 lei - 20%
Preț: 560.93 lei - 20%
Preț: 327.36 lei - 20%
Preț: 340.04 lei - 20%
Preț: 327.36 lei - 20%
Preț: 328.94 lei - 20%
Preț: 629.71 lei - 20%
Preț: 568.70 lei - 20%
Preț: 447.31 lei - 20%
Preț: 733.68 lei - 20%
Preț: 315.26 lei - 20%
Preț: 315.62 lei - 20%
Preț: 1020.28 lei - 20%
Preț: 850.42 lei - 20%
Preț: 1391.87 lei - 20%
Preț: 519.32 lei
Preț: 485.09 lei
Preț vechi: 606.36 lei
-20%
Puncte Express: 728
Preț estimativ în valută:
85.87€ • 99.74$ • 74.39£
85.87€ • 99.74$ • 74.39£
Carte tipărită la comandă
Livrare economică 02-16 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783031498954
ISBN-10: 303149895X
Pagini: 308
Ilustrații: XIII, 308 p. 113 illus., 90 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 303149895X
Pagini: 308
Ilustrații: XIII, 308 p. 113 illus., 90 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Human Activity Segmentation Challenge.- Human Activity Segmentation Challenge@ECML/PKDD’23.- Change points detection in multivariate signal applied to human activity segmentation.- Change Point Detection via Synthetic Signals.- Oral Presentation.- Clustering time series with k-medoids based algorithms.- Explainable Parallel RCNN with Novel Feature Representation for Time Series Forecasting.- RED CoMETS: an ensemble classifier for symbolically represented multivariate time series.- Deep Long Term Prediction for Semantic Segmentation in Autonomous Driving.- Extracting Features from Random Subseries: A Hybrid Pipeline for Time Series Classification and Extrinsic Regression.- ShapeDBA: Generating Effective Time Series Prototypes using ShapeDTW Barycenter Averaging.- Poster Presentation.- Temporal Performance Prediction for Deep Convolutional Long Short-Term Memory Networks.- Evaluating Explanation Methods for Multivariate Time Series
Classification.- tGLAD: A sparse graph recovery based approach for multivariate time series segmentation.- Designing a New Search Space for Multivariate Time-Series Neural Architecture Search.- Back to Basics: A Sanity Check on Modern Time Series Classification Algorithms.- Do Cows Have Fingerprints? Using Time Series Techniques and Milk Flow Profiles to Characterise Cow Behaviours and Detect Health Issues.- Exploiting Context and Attention with Recurrent Neural Network for Sensor Time Series Prediction.- Rail Crack Propagation Forecasting Using Multi-horizons RNNs.- Electricity Load and Peak Forecasting: Feature Engineering, Probabilistic LightGBM and Temporal Hierarchies.- Time-aware Predictions of Moments of Change in Longitudinal User Posts on Social Media.