A Probabilistic Theory of Pattern Recognition
Autor Luc Devroye, Laszlo Györfi, Gabor Lugosien Limba Engleză Paperback – 22 noi 2013
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 581.07 lei 6-8 săpt. | |
| Springer – 22 noi 2013 | 581.07 lei 6-8 săpt. | |
| Hardback (1) | 773.79 lei 6-8 săpt. | |
| Springer – 4 apr 1996 | 773.79 lei 6-8 săpt. |
Preț: 581.07 lei
Preț vechi: 683.62 lei
-15% Nou
Puncte Express: 872
Preț estimativ în valută:
102.85€ • 119.89$ • 89.95£
102.85€ • 119.89$ • 89.95£
Carte tipărită la comandă
Livrare economică 20 ianuarie-03 februarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461268772
ISBN-10: 146126877X
Pagini: 660
Ilustrații: XV, 638 p.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 0.98 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Locul publicării:New York, NY, United States
ISBN-10: 146126877X
Pagini: 660
Ilustrații: XV, 638 p.
Dimensiuni: 155 x 235 x 36 mm
Greutate: 0.98 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Preface * Introduction * The Bayes Error * Inequalities and alternate
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index
distance measures * Linear discrimination * Nearest neighbor rules *
Consistency * Slow rates of convergence Error estimation * The regular
histogram rule * Kernel rules Consistency of the k-nearest neighbor
rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-
Chervonenkis theory * Lower bounds for empirical classifier selection
* The maximum likelihood principle * Parametric classification *
Generalized linear discrimination * Complexity regularization *
Condensed and edited nearest neighbor rules * Tree classifiers * Data-
dependent partitioning * Splitting the data * The resubstitution
estimate * Deleted estimates of the error probability * Automatic
kernel rules * Automatic nearest neighbor rules * Hypercubes and
discrete spaces * Epsilon entropy and totally bounded sets * Uniform
laws of large numbers * Neural networks * Other error estimates *
Feature extraction * Appendix * Notation * References * Index