Theory and Applications of the Poincaré Group: Fundamental Theories of Physics, cartea 17
Autor Young Suh Kim, M. Nozen Limba Engleză Paperback – 20 sep 2011
| Toate formatele și edițiile | Preț | Express |
|---|---|---|
| Paperback (1) | 910.42 lei 3-5 săpt. | |
| SPRINGER NETHERLANDS – 20 sep 2011 | 910.42 lei 3-5 săpt. | |
| Hardback (1) | 917.09 lei 6-8 săpt. | |
| SPRINGER NETHERLANDS – 30 apr 1986 | 917.09 lei 6-8 săpt. |
Din seria Fundamental Theories of Physics
- 18%
Preț: 919.87 lei - 18%
Preț: 745.81 lei - 24%
Preț: 1151.34 lei - 24%
Preț: 848.01 lei -
Preț: 406.82 lei - 18%
Preț: 884.25 lei - 24%
Preț: 852.28 lei - 18%
Preț: 1180.66 lei - 18%
Preț: 919.17 lei - 15%
Preț: 650.79 lei - 18%
Preț: 1354.89 lei - 18%
Preț: 1073.25 lei - 18%
Preț: 912.59 lei - 15%
Preț: 575.58 lei - 18%
Preț: 1079.44 lei - 15%
Preț: 572.36 lei -
Preț: 449.28 lei - 18%
Preț: 971.69 lei - 15%
Preț: 667.47 lei - 15%
Preț: 572.36 lei - 18%
Preț: 910.24 lei -
Preț: 398.65 lei - 18%
Preț: 916.43 lei - 18%
Preț: 926.66 lei - 15%
Preț: 618.50 lei - 18%
Preț: 915.53 lei - 15%
Preț: 567.09 lei - 18%
Preț: 904.96 lei - 15%
Preț: 565.19 lei - 18%
Preț: 1175.96 lei - 18%
Preț: 904.36 lei - 18%
Preț: 914.52 lei - 18%
Preț: 1186.41 lei - 18%
Preț: 911.94 lei - 18%
Preț: 962.90 lei - 18%
Preț: 1178.09 lei - 18%
Preț: 958.06 lei - 18%
Preț: 909.67 lei - 15%
Preț: 615.52 lei - 15%
Preț: 612.23 lei -
Preț: 382.65 lei - 18%
Preț: 912.40 lei
Preț: 910.42 lei
Preț vechi: 1110.27 lei
-18% Nou
Puncte Express: 1366
Preț estimativ în valută:
161.15€ • 188.58$ • 140.98£
161.15€ • 188.58$ • 140.98£
Carte disponibilă
Livrare economică 02-16 ianuarie 26
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401085267
ISBN-10: 9401085269
Pagini: 352
Ilustrații: XV, 331 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Fundamental Theories of Physics
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401085269
Pagini: 352
Ilustrații: XV, 331 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Fundamental Theories of Physics
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I: Elements of Group Theory.- 1. Definition of a Group.- 2. Subgroups, Cosets, and Invariant Subgroups.- 3. Equivalence Classes, Orbits, and Little Groups.- 4. Representations and Representation Spaces.- 5. Properties of Matrices.- 6. Schur’s Lemma.- 7. Exercises and Problems.- II: Lie Groups and Lie Algebras.- 1. Basic Concepts of Lie Groups.- 2. Basic Theorems Concerning Lie Groups.- 3. Properties of Lie Algebras.- 4. Properties of Lie Groups.- 5. Further Theorems of Lie Groups.- 6. Exercises and Problems.- III: Theory of the Poincaré Group.- 1. Group of Lorentz Transformations.- 2. Orbits and Little Groups of the Proper Lorentz Group.- 3. Representations of the Poincaré Group.- 4. Lorentz Transformations of Wave Functions.- 5. Lorentz Transformations of Free Fields.- 6. Discrete Symmetry Operations.- 7. Exercises and Problems.- IV: Theory of Spinors.- 1. SL(2, c) as the Covering Group of the Lorentz Group.- 2. Subgroups of SL(2, c).- 3. SU (2).- 4. 5L(2, c) Spinors and Four-Vectors.- 5. Symmetries of the Dirac Equation.- 6. Exercises and Problems.- V: Covariant Harmonic Oscillator Formalism.- 1. Covariant Harmonic Oscillator Differential Equations.- 2. Normalizable Solutions of the Relativistic Oscillator Equation.- 3. Irreducible Unitary Representations of the Poincaré Group.- 4. Transformation Properties of Harmonic Oscillator Wave Functions.- 5. Harmonic Oscillators in the Four-Dimensional Euclidean Space.- 6. Moving O(4) Coordinate System.- 7. Exercises and Problems.- VI: Dirac’s Form of Relativistic Quantum Mechanics.- 1. C-Number Time-Energy Uncertainty Relation.- 2. Dirac’s Form of Relativistic Theory of “Atom ”.- 3. Dirac’s Light-Cone Coordinate System.- 4. Harmonic Oscillators in the Light-Cone Coordinate System.- 5. Lorentz-InvariantUncertainty Relations.- 6. Exercises and Problems.- VII: Massless Particles.- 1. What is the E(2) Group?.- 2. E(2)-like Little Group for Photons.- 3. Transformation Properties of Photon Polarization Vectors.- 4. Unitary Transformation of Photon Polarization Vectors.- 5. Massless Particles with Spin 1/2.- 6. Harmonic Oscillator Wave Functions for Massless Composite Particles.- 7. Exercises and Problems.- VIII: Group Contractions.- 1. SE(2) Group as a Contraction of SO(3).- 2. E(2)-like Little Group as an Infinite-momentum/zero-mass Limit of the O(3)-like Little Group for Massive Particles.- 3. Large-momentum/zero-mass Limit of the Dirac Equation.- 4. Finite-dimensional Non-unitary Representations of the SE(2) Group.- 5. Polarization Vectors for Massless Particles with Integer Spin.- 6. Lorentz and Galilei Transformations.- 7. Group Contractions and Unitary Representations of SE(2).- 8. Exercises and Problems.- IX: SO(2, 1) and SU(1, 1).- 1. Geometry of SL(2, r) and Sp(2).- 2. Finite-dimensional Representations of SO(2, 1).- 3. Complex Angular Momentum.- 4. Unitary Representations of SU(1, 1).- 5. Exercises and Problems.- X: Homogeneous Lorentz Group.- 1. Statement of the Problem.- 2. Finite-dimensional Representations of the Homogeneous Lorentz Group.- 3. Transformation Properties of Electric and Magnetic Fields.- 4. Pseudo-unitary Representations for Dirac Spinors.- 5. Harmonic Oscillator Wave Functions in the Lorentz Coordinate System.- 6. Further Properties of the Homogeneous Lorentz Group.- 7. Concluding Remarks.- XI: Hadronic Mass Spectra.- 1. Quark Model.- 2. Three-particle Symmetry Classifications According to the Method of Dirac.- 3. Construction of Symmetrized Wave Functions.- 4. Symmetrized Products of Symmetrized Wave Functions.- 5. Spin Wave Functions for the Three-Quark System.- 6. Three-quark Unitary Spin and SU(6) Wave Functions.- 7. Three-body Spatial Wave Functions.- 8. Totally Symmetric Baryonic Wave Functions.- 9. Baryonic Mass Spectra.- 10. Mesons.- 11. Exercises and Problems.- XII: Lorentz-Dirac Deformation in High-Energy Physics.- 1. Lorentz-Dirac Deformation of Hadronic Wave Functions.- 2. Form Factors of Nucléons.- 3. Calculation of the Form Factors.- 4. Scaling Phenomenon and the Parton Picture.- 5. Covariant Harmonic Oscillators and the Parton Picture.- 6. Calculation of the Parton Distribution Function for the Proton.- 7. Jet Phenomenon.- 8. Exercises and Problems.- References.